PRAIRIE CREEK MINE
DRAFT CLOSURE AND RECLAMATION PLAN

April, 2019
Preamble

This Closure and Reclamation Plan applies to exploration activities at the Prairie Creek Mine site.

The following formal distribution has been made of this plan:

Mackenzie Valley Land and Water Board

Canadian Zinc Corporation - Prairie Creek Mine Office

NorZinc - Vancouver Office

Additional copies and updates of this Plan may be obtained by writing to:

NorZinc
Suite 1710-650 West Georgia Street,
Vancouver, British Columbia
V6B 4N9
Phone: 604-688-2001
Fax: 604-688-2043
Email: David.Harpley@NorZinc.com

Prairie Creek Mine:

Mailing Address:

Canadian Zinc Corporation
Prairie Creek Mine
9926 101 Ave
Fort Simpson, NT, X0E 0N0

Contact Numbers:

Satellite phone: 1-600-700-2454
Satellite fax: 1-600-700-9209
VOIP phone: 778-724-2512
Review and Approval

The following signatures indicate that the undersigned have read and agreed to the contents of this document, and that they approve and accept its distribution and use.

<table>
<thead>
<tr>
<th>Description</th>
<th>Authority</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Owner</td>
<td>David Harpley</td>
<td></td>
<td>2019-04-17</td>
</tr>
<tr>
<td>Reviewed by:</td>
<td>VP Environment & Permitting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved by:</td>
<td>Full Name, Job Title</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

LIST OF ACRONYMS

GLOSSARY

1.0 INTRODUCTION... 1
 1.1 Company Name, Location and Mailing Address ... 1
 1.2 Purpose and Scope .. 1
 1.3 CZN Environmental Policy .. 2
 1.4 Closure and Reclamation Plan Goal and Principles ... 2
 1.4.1 Closure Goal ... 2
 1.4.2 Closure Principles ... 2
 1.5 Regulatory Requirements and Guidelines ... 3
 1.6 Project Setting ... 3

2.0 CLOSURE AND RECLAMATION ... 7
 2.1 Reclamation Goals .. 7
 2.2 Specific Infrastructure ... 7
 2.2.1 Water Treatment Facilities ... 7
 2.2.2 Decline Rock .. 8
 2.2.3 Phased Approach and Implementation Schedule ... 8
 2.2.4 Restoration Costs ... 8
 2.3 Monitoring .. 8
 2.4 Adaptive Management .. 8

REFERENCES ... 9

LIST OF FIGURES IN TEXT

Figure 1: Prairie Creek Mine Property Location .. 4
Figure 2: Existing Infrastructure ... 5
Figure 3: Treated water delivered to reaction tanks and the Polishing Pond by pipeline 6

LIST OF APPENDICES

Appendix A: 2nd Decline Project Description
LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronyms/Abbreviations</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AANDC</td>
<td>Aboriginal Affairs and Northern Development Canada</td>
</tr>
<tr>
<td>ASR</td>
<td>All Season Road</td>
</tr>
<tr>
<td>CRP</td>
<td>Closure and Reclamation Plan</td>
</tr>
<tr>
<td>CZN</td>
<td>Canadian Zinc Corporation</td>
</tr>
<tr>
<td>DFO</td>
<td>Department of Fisheries and Oceans</td>
</tr>
<tr>
<td>GNWT</td>
<td>Government of the Northwest Territories</td>
</tr>
<tr>
<td>ha</td>
<td>Hectares</td>
</tr>
<tr>
<td>INAC</td>
<td>Indian and Northern Affairs Canada</td>
</tr>
<tr>
<td>km</td>
<td>Kilometre</td>
</tr>
<tr>
<td>m</td>
<td>Metre</td>
</tr>
<tr>
<td>M</td>
<td>Million</td>
</tr>
<tr>
<td>Mine</td>
<td>Prairie Creek Mine</td>
</tr>
<tr>
<td>NNPR</td>
<td>Nahanni National Park Reserve</td>
</tr>
<tr>
<td>MVERB</td>
<td>Mackenzie Valley Environmental Review Board</td>
</tr>
<tr>
<td>MVLWB</td>
<td>Mackenzie Valley Land and Water Board</td>
</tr>
<tr>
<td>MVRMA</td>
<td>Mackenzie Valley Resource Management Act</td>
</tr>
<tr>
<td>NWT</td>
<td>Northwest Territories</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Bedrock</td>
<td>The consolidated rock (harder than 3 Moh’s scale of hardness) underlying the Earth’s surface. Bedrock can be encountered at depths ranging from the Earth’s surface to hundreds of meters below, depending on the level of exposure to erosion.</td>
</tr>
<tr>
<td>Borrow Pit</td>
<td>Pit created to provide earth materials to be used as fill at another site.</td>
</tr>
<tr>
<td>CCME</td>
<td>Canadian Council of Ministers of the Environment is an inter-governmental organization through which members establish national environmental standards for various issues such as waste management, air and water quality.</td>
</tr>
<tr>
<td>Cut and Fill</td>
<td>Construction practice in which earth materials are excavated from part of an area and used as fill in adjacent areas.</td>
</tr>
<tr>
<td>Freshet</td>
<td>Rapid rise in stream flow due to runoff from snowmelt during spring.</td>
</tr>
<tr>
<td>Hydrology</td>
<td>The study water and its movement on land and in the atmosphere, and the effects it has on the earth’s surface.</td>
</tr>
<tr>
<td>Permafrost</td>
<td>Ground frozen for at least two consecutive years. Continuous permafrost is defined as an area where at least 90% of the land area is underlain by permafrost. Discontinuous permafrost is defined as an area where 10 to 90% of the land area is underlain by permafrost.</td>
</tr>
<tr>
<td>Progressive Reclamation</td>
<td>Action that can be taken during operations before permanent closure to take advantage of cost and operating efficiencies by using resources available from ongoing operations. Enhances environmental protection and shortens the time frame for achieving reclamation objectives.</td>
</tr>
<tr>
<td>Quarry</td>
<td>A type of open-pit development from which building materials are often extracted.</td>
</tr>
<tr>
<td>Riparian</td>
<td>Area of land adjacent to a stream, river, lake or wetland containing vegetation that, due to the presence of water, is distinctly different from the vegetation of adjacent upland areas.</td>
</tr>
<tr>
<td>Riprap</td>
<td>Layer of large stones or broken rock placed on an embankment for erosion control and protection.</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The Prairie Creek Mine (the Mine) is currently being managed to support exploration activities, mine site studies and care and maintenance programs during the open water season.

This Closure and Reclamation Plan (CRP) was prepared by Canadian Zinc Corporation (CZN) to support applications for a new exploration Water Licence and Land Use Permit (LUP) to continue managing and treating mine water emanating from the underground workings, and potentially for the development of a 2nd exploration decline.

1.1 Company Name, Location and Mailing Address

Head Office:
Suite 1710-650 West Georgia Street, Vancouver, BC, V6B 4N9
Phone: 604-688-2001
Fax: 604-688-2043
Email: David.Harpley@norzinc.com

Prairie Creek Mine:
Iridium 9555 Satellite Phone 1 (yellow) 011-8816-315-30998
Iridium 9505A Satellite Phone 2 (black) 011-8816-315-30997
Iridium 9505A Satellite Phone 3 (orange) 011-8816-315-30996
Ground-To-Air Radio Handheld FREQ 122.800

1.2 Purpose and Scope

The purpose of this Closure and Reclamation Plan (CRP) is to provide for the appropriate closure of facilities associated with mine water treatment during the exploration phase, and if a 2nd Decline is development, the closure of that Decline and any waste rock brought to surface as a result of it.

CZN may develop a second underground decline from the 880 metre level of the Mine, similar to one developed in 2007/8. Access to the 880 metre level is via the 870 portal.

CZN’s current liability in connection with the site is limited by the terms of the Surface Lease and attached Abandonment and Restoration Plan under which CZN holds its current interest in the Prairie Creek property. CZN has to date been conducting site activities and exploration under Surface Lease 95F/10-5-5 (the Surface Lease). An Abandonment and Restoration Plan is attached to, and forms part of, the Surface Lease (as Schedule A). Accordingly, under the terms of the Surface Lease, the reclamation obligations of CZN as lessee are limited to those obligations specified in the Abandonment and Restoration Plan. This is not an obligation to reclaim the site in its totality, but only an obligation to carry out the Abandonment and Restoration Plan. Further details are provided in our letter to the Board dated December 22, 2013 in connection with LUP MV2008D14 and Water Licence MV2008L2-002.

Further to the above, this Closure and Reclamation Plan is specific to an exploration Water Licences and a LUP for 2nd Decline development, and not the entire Prairie Creek Mine site.
1.3 **CZN Environmental Policy**

It is CZN's policy to achieve and maintain a high standard of environmental care in conducting its business as a resource company, and through its developments, contribute to sustaining society’s material needs. Canadian Zinc’s approach to environmental management seeks continuous improvement in performance by incorporating evolving scientific knowledge and community expectations into its operations.

Specifically, it is CZN's policy to:

- Comply with and adopt the spirit of all applicable laws, regulations and standards, and where laws do not adequately protect the environment, apply standards that minimize any adverse environmental impacts resulting from its operations, products and services.

- Communicate openly and in a timely manner with government on environmental issues, and contribute to the development of policies, legislation and regulations that may affect CZN and its operations.

- Recognize local communities as stakeholders and engage with them in a process of open engagement and timely communication regarding environmental management issues and impacts and seek to involve them in decision making and implementation.

- Ensure that employees and suppliers of goods and services are informed about this policy and that they are aware of their environmental responsibilities in relation to CZN’s business.

- Develop and implement management systems to identify, control and monitor potential environmental risks arising from operations, and be prepared to respond to adversity.

1.4 **Closure and Reclamation Plan Goal and Principles**

1.4.1 **Closure Goal**

The closure goal is the guiding statement and starting point for closure and reclamation planning. Consistent with the Guidelines for the Closure and Reclamation of Advanced Mineral Exploration and Mine Sites in the Northwest Territories (MVLWB/AANDC 2013):

The overall goal of the CRP is to provide the basis for the eventual closure and reclamation of exploration disturbances and affected areas to technically viable and, where practicable, self-sustaining ecosystems that are compatible with a healthy environment and with human activities.

1.4.2 **Closure Principles**

This closure goal will be supported by the four general closure principles outlined in MVLWB/AANDC (2013):

- physical stability
- chemical stability
- no long-term active care requirements, and
- future uses (including aesthetics and values).
1.4.2.1 Physical Stability
Consistent with the guidelines, the exploration facilities will be modified at closure, if necessary, to be physically stable and not pose a hazard to humans, wildlife, aquatic life, or environmental health and safety.

1.4.2.2 Chemical Stability
Any waste or water from exploration facilities should present no risks to water quality, wildlife or human environmental health and safety following closure and reclamation of the Project.

1.4.2.3 No Long-Term Active Care
CZN will strive to achieve a closure condition that will not require long-term active care and maintenance. Thus, any post-closure monitoring is expected to be limited to a defined period of time.

1.4.2.4 Future Uses
CZN will strive to achieve closure conditions that are compatible with the surrounding lands and water bodies upon completion of the closure activities.

1.5 Regulatory Requirements and Guidelines
The main regulatory requirements and guidelines pertaining to the closure and reclamation of the exploration facilities include:

- Mine Site Reclamation Guidelines for the Northwest Territories (INAC 2007)

1.6 Project Setting
The Prairie Creek Mine is located at 61° 33’ north latitude and 124° 48’ west longitude (see Figure 1). The Mine is situated adjacent to Prairie Creek about 48 km upstream from its confluence with the South Nahanni River, and 7 km upstream of the point where Prairie Creek crosses the boundary of the expanded Nahanni National Park Reserve.

The mine site is at an elevation of 850 m above sea level, and is situated in topography characterized by low mountains and narrow valleys with an average relief of 300 m. Short summers are typical of the area’s sub-arctic climate, where the mean annual temperature is -5°C. Annual precipitation is approximately 40 cm, most of which falls as rain.

The existing mine water treatment system operating at the site is described in the Effluent Treatment Options Plan and Minewater Contingency Plan, both of which are available on the Water Board’s public registry for MV2001L2-0003. The main components of the system are a small building for sodium sulphide mixing and supply, two reaction vessels, a pipeline and the Polishing Pond with an approximate capacity of 1,500 m³ (see Figures 2 and 3). The system treats mine water at rates in the range 2-16 L/sec. This water is primarily from stopes and cross-cuts of the mineralized vein which were developed in the 1970’s or earlier. Less than 1 L/sec emanates from the flooded Decline developed in 2006-2007.
Figure 1
PRAIRIE CREEK MINE
PROPERTY LOCATION

Proposed Naats'ihch'oh National Park Reserves
Proposed NNPR Expansion Boundary Option 1 - Sept 2007

Approximate Scale
Kilometers

CANADIAN ZINC CORPORATION
A project description for the 2nd Decline, which was submitted in support of LUP MV2012C0008, describes the proposed location of the Decline and plans for the surface storage of waste rock. A copy of this project description is provided in Appendix A.

The facilities associated with this Closure and Reclamation Plan are highlighted in Figure 2.
2.0 CLOSURE AND RECLAMATION

2.1 Reclamation Goals

The general reclamation goals are to:

- Protect public health and safety;
- Minimize the adverse effects of the Project on the environment;
- Establish conditions that lead to acceptable long-term physical and chemical stability of the reclaimed areas;
- Establish conditions that are appropriate for the surrounding environment and identified end land uses; and
- Return the affected areas around the Project to technically viable and, where practicable, self-sustaining ecosystems that are compatible with a healthy environment and with human activities.

These goals will be supported by the four closure principles of physical stability, chemical stability, no long-term active care requirements, and future uses (including aesthetics and values).

2.2 Specific Infrastructure

2.2.1 Water Treatment Facilities

The exploration-phase water treatment facilities were built to manage water from the 1st Decline and the pre-existing mine water emanating from the 870 Portal, which CZN agreed to manage as part of Decline development. It has been demonstrated that water from the now flooded 1st Decline is small in volume (1L sec) and has a water quality that does not require treatment. It is reasonable to assume that, if a 2nd Decline is developed in similar host rock, and that Decline is subsequently allowed to flood, that the drainage from that flooded Decline will similarly not require treatment. Therefore, if ‘closure’ of the Declines is considered to include allowing them to remain flooded, and given that treatment of the subsequent drainage from those flooded Declines is not required, then the water treatment facilities that CZN installed could be removed.

Removal of the water treatment facilities would include the dismantling of the building in which sodium sulphide is mixed, and the removal of the two reaction tanks and the pipeline to the Polishing Pond. These are all relatively small structures. The Polishing Pond would also be closed by removing the hypalon liner, which could either be taken to a landfill or left in the bottom of the pond, and then dozing the pond dykes into the centre of the structure and contouring to form a low mound. Local loose shale could be placed over the mound to form a non-erodable surface.

However, it is not CZN’s intention to close or reclaim any of the current water treatment facilities or infrastructure since these will be required to continue to treat the pre-existing mine drainage as part of the on-going care and maintenance of the mine site. The Polishing Pond and the existing Catchment Pond will continue to be operated and maintained as part of the on-going site care and maintenance in anticipation for future use during mine construction and the start-up of production.
2.2.2 Decline Rock

As explained in the 2nd Decline Project Description in Appendix A, development rock from the 2d Decline would be placed on a new, lined pad adjacent to the 870 Portal. The rock is expected to be substantially acid-consum ing, akin to rock from the 1st Decline, although this will be confirmed by sampling and testing during development.

For closure of the Decline rock storage area, there is little need to undertake any actions. The rock pile will be physically and chemically stable. The Prairie Creek area is characterized by extensive rock outcrops and alluvium-filled valleys. The rock pile location at the toe of valley slopes and distant from Prairie Creek is suitable.

The Decline rock storage area would be located on a broader, thicker pad of rock placed around the 870 Portal area previous to CZN's tenure. This rock is assumed to be development rock from the approximately 5 km of access ways present underground. Closure and reclamation of this rock pad is considered to be outside of the scope of this Closure and reclamation Plan.

2.2.3 Phased Approach and Implementation Schedule

Because of the small scale, short term, and limited scope of the proposed operations to be carried out under the licensed undertakings, it is not practical in any meaningful way to carry out progressive reclamation or to adopt a phased approach or implementation schedule.

The existing water management facilities, and other existing mine infrastructure, will continue to be maintained as-is as part of the on-going site care and maintenance in preparation for future use during mine construction and start-up of production.

2.2.4 Restoration Costs

As this Plan focuses on the specific facilities and infrastructure associated with the 2nd Decline and the existing water treatment, for which no closure activities are proposed, no costs are anticipated to be incurred.

No part of the Prairie Creek Project will be closed or reclaimed upon completion of the licenced activities.

2.3 Monitoring

Water monitoring will occur in the form of the conduct of the Surveillance Network Program associated with the Water Licence. Monitoring of Decline rock geochemistry will occur according to a defined sampling program. Since closure activities are not expected to occur, no monitoring associated with closure will be necessary.

2.4 Adaptive Management

Adaptive Management is a systematic, rigorous approach designed to link environmental monitoring to management actions. This will occur during the process of water treatment under the Water Licence, and development of the 2nd Decline, if it occurs, but since closure of these facilities is not proposed, there will be no closure monitoring and therefore no adaptive management.
REFERENCES

Mackenzie Valley Land and Water Board (MVLWB) and Aboriginal Affairs and Northern Development Canada (AANDC). 2013. Guidelines for the Closure and Reclamation of Advanced Mineral Exploration and Mine Sites in the Northwest Territories.
APPENDIX A

2ND DECLINE PROJECT DESCRIPTION
NorZinc
Parent Company of Canadian Zinc

April 22, 2019

PROJECT DESCRIPTION

PRAIRIE CREEK MINE
2nd DECLINE UNDERGROUND DEVELOPMENT
AND EXPLORATION DRILLING

Type “A” Land Use Permit Application

Overview

Since acquiring the Prairie Creek Mine in 1991, Canadian Zinc Corporation (CZN) has conducted numerous diamond drill programs on the property. The Company’s drilling focus up to 2006 was primarily on Zone 3 in the immediate mine site area, where 80% of the total exploratory work has been carried out.

In 1992, a stratabound form of mineralization was discovered underlying the vein-type deposits of Zone 3 while drilling to extend these vein resources at depth. Up to six mineralized stratabound lenses have been intersected varying in thickness from between less than one metre to several metres in thickness. Total thickness of the stratabound zone reaches up to 28 m. The stratabound deposits are located at around the 600 – 650 m elevation, 200 – 350 m below the existing underground workings and 400 m below the surface of the ground.

As a result of the exploration drilling undertaken by CZN up to 2007, the mineral resource was revised to 11.4 million tonnes grading 10.6% lead, 12.1% zinc, 0.4% copper and 187 g/tonne silver. Of this resource, approximately 80% is comprised of vein-type mineralization and only 12% is stratabound mineralization.

As part of the ongoing process of establishing, confirming and enhancing the known mineral resource at the Prairie Creek property, CZN developed an exploration decline in 2006-2007 to permit access for underground exploration drilling of the stratabound deposit underlying the Zone 3 quartz vein mineralization.

In 2012, CZN proposed to develop a second decline to allow underground exploration drilling of the stratabound mineralization further to the south, as well as vein mineralization in the deeper portions of the Zone 3 area. This would improve confidence in the existing resources. The proposed Decline would allow drilling to be conducted from underground about 200 m above the stratabound, as compared to drilling from surface which would require approximately 450 m long holes, resulting in a substantial saving in drilling costs. CZN obtained a LUP for this work, but did not use it. CZN now wishes to obtain a replacement LUP for the same work to retain the
option of proceeding with the work in the event that mining operations do not commence in the near future as planned.

Location

The Decline development would take place within 1000 m of the existing mine site facilities and within the area of traditional mining activity at Prairie Creek and the boundaries of Mining Lease 2932 and Surface Lease 95F10/10-5-3.

Exploration work and drilling would be carried out entirely underground, with the only surface impact being the deposit of the development waste from the Decline and drill station excavations. No new portal will be required, similar to the previous program. The new Decline would be established to the north-west of the existing 870 Level (see plan view in Figure 1), and access to the new Decline would be gained underground from that level. There are a number of reasons for this proposed route and location:

- Development rock can be readily integrated with the existing pile from the previous decline program located on the 870 level staging area
- Drainage water can be readily pumped up to the 880 level and then delivered to the existing point of treatment of 870 portal water
- Development rock will be benign since the tunnel will be entirely in the footwall of, and distant from, the mineralization.

The location of the Decline is shown in long-section in Figure 1 in relation to the target zone of the proposed exploration. The underground exploration development would be of similar scope to the 2006/2007 work.

Geology and Development Rock

As noted above, the new Decline would be located north-west of the existing 870 Level adit. This is shown in cross-section in Figure 2. The intent is to keep the development sufficiently distant from the Vein to ensure the rock is benign. However, this would be confirmed with representative rock sampling and testing for ABA/metals, and leachate collection and analysis for metals, as was done for the existing Decline.

The rocks that the exploration decline would be driven in are very similar to those of the previous decline. Carbonate limestones and shales of the Whittaker and Lower Road River Formations are projected to occur in the area of the new tunnel. The occurrence of the specific rock units are verified through wide spaced surface diamond drilling and underground mapping. The new Decline would not crosscut the main vein mineralization, but lie wholly within the footwall of the vein mineralization. Therefore, no mineralized material would be excavated and brought to surface.

Development waste rock from the new Decline would be stored on the 870 Level portal staging area with the rock from the previous program. Figures 3 and 4 show in plan and section how the staging area and rock storage ‘pad’ look now and how they will look after the proposed program. The existing pad would be enlarged by placing compacted soil over an extension area. The height of the existing rock pile will then be reduced by spreading the rock over the enlarged pad,
followed by compaction. The rock will then be capped with a synthetic liner, with liner protection. The liner will ‘cap’ the existing pile and also form the base of the new pile. The liner will be sloped to a leachate collection sump. Leachate will flow from the sump in a pipeline to the present point of treatment of 870 Level water, either by gravity or by pumping.

Geochemical data from the previous program confirmed that the rock formations distant from the Vein are essentially benign and not a significant source of leachable metals. The data in Table 1 confirms this. Geochemical data are provided for samples of rock from the existing Decline. Figure 5 shows the location of the rock in the Decline that the samples were derived from. The rock was from the Road River Formation, composed of shale and argillaceous dolostone. Rock from the new decline development would be a comparable distance from the Vein and would have similar geochemistry.

Drainage Water

Drainage water from the new Decline will be pumped up to the 880 m level and delivered to the present point of treatment of water leaving the 870 portal. Sumps may be created along the new Decline as it is developed to allow for multi-stage pumping with reduced ‘head’, and to settle out sediment. However, experience from the previous underground program indicates that it is preferable to have a turbid flow of water entering the water treatment culvert. This is because the existing sulphide treatment process, while efficient at removing dissolved metals, produces fine sediment that is difficult to settle. Turbid water in the influent stream provides nuclei for the fine sediment to coagulate and settle. Metal concentrations in treated water after sulphide treatment were consistently lower during the period of Decline development.

The demand for sulphide is not expected to be significantly different from the present because the new Decline water is expected to have low metal concentrations, just as the previous Decline did.

Treated water would be sent to the existing Polishing Pond for sediment to settle out. Construction of the pond was a requirement of the existing Water Licence.

Surface Facilities

No new surface facilities would be required to support the proposed underground exploration program. The existing camp, fuel storage and service facilities, presently in use for site ‘care and maintenance’ activities, are sufficient and adequate for the tasks required. Domestic water is supplied from an existing well, garbage is incinerated. The project would require a moderate increase in personnel on-site, as before. Sufficient accommodation is available. The existing equipment fleet at the site will be used, although one or two pieces of specialized underground equipment may be brought in.
TABLE 1: EXISTING DECLINE ROCK GEOCHEMISTRY

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Cd ppm</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
<th>Paste pH</th>
<th>Sulphur (T) %</th>
<th>AP NP Net</th>
<th>NP ppm</th>
<th>Net ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>6</td>
<td>318</td>
<td>693</td>
<td>8.3</td>
<td>0.24</td>
<td>4.7</td>
<td>793.8</td>
<td>789.1</td>
</tr>
<tr>
<td>3-2</td>
<td>3</td>
<td>58</td>
<td>235</td>
<td>8.9</td>
<td>0.3</td>
<td>7.2</td>
<td>761.3</td>
<td>754.1</td>
</tr>
<tr>
<td>3-3</td>
<td>1</td>
<td>32</td>
<td>142</td>
<td>8.1</td>
<td>0.31</td>
<td>7.8</td>
<td>727.5</td>
<td>719.7</td>
</tr>
<tr>
<td>3-4</td>
<td>3</td>
<td>61</td>
<td>271</td>
<td>8.6</td>
<td>0.29</td>
<td>6.9</td>
<td>701.3</td>
<td>694.4</td>
</tr>
<tr>
<td>4-1</td>
<td>6</td>
<td>349</td>
<td>722</td>
<td>8.15</td>
<td>0.4</td>
<td>11.3</td>
<td>584.8</td>
<td>573.6</td>
</tr>
<tr>
<td>4-2</td>
<td>7</td>
<td>361</td>
<td>817</td>
<td>8.26</td>
<td>0.39</td>
<td>10.9</td>
<td>633.6</td>
<td>622.7</td>
</tr>
<tr>
<td>4-3</td>
<td>3</td>
<td>133</td>
<td>325</td>
<td>8.27</td>
<td>0.36</td>
<td>10.3</td>
<td>586.2</td>
<td>575.9</td>
</tr>
<tr>
<td>4-4</td>
<td>4</td>
<td>206</td>
<td>435</td>
<td>8.22</td>
<td>0.38</td>
<td>10.6</td>
<td>578.5</td>
<td>567.9</td>
</tr>
<tr>
<td>4-4A</td>
<td>3</td>
<td>189</td>
<td>391</td>
<td>8.25</td>
<td>0.39</td>
<td>11.3</td>
<td>573.5</td>
<td>562.3</td>
</tr>
<tr>
<td>5-1</td>
<td>2</td>
<td>92</td>
<td>186</td>
<td>8.16</td>
<td>0.28</td>
<td>8.1</td>
<td>776.9</td>
<td>768.8</td>
</tr>
<tr>
<td>5-2</td>
<td>2</td>
<td>143</td>
<td>209</td>
<td>8.30</td>
<td>0.19</td>
<td>5.0</td>
<td>781.3</td>
<td>776.3</td>
</tr>
<tr>
<td>5-3</td>
<td>4</td>
<td>106</td>
<td>276</td>
<td>7.86</td>
<td>0.26</td>
<td>7.2</td>
<td>757.5</td>
<td>750.3</td>
</tr>
<tr>
<td>5-5</td>
<td>5</td>
<td>262</td>
<td>521</td>
<td>8.22</td>
<td>0.25</td>
<td>7.2</td>
<td>750.0</td>
<td>742.8</td>
</tr>
<tr>
<td>6-1</td>
<td>1.3</td>
<td>73.5</td>
<td>136</td>
<td>8.31</td>
<td>0.3</td>
<td>9.4</td>
<td>836.5</td>
<td>827.1</td>
</tr>
<tr>
<td>6-2</td>
<td>1.9</td>
<td>86.3</td>
<td>186</td>
<td>8.45</td>
<td>0.29</td>
<td>9.1</td>
<td>849.5</td>
<td>840.4</td>
</tr>
<tr>
<td>6-3</td>
<td>2.5</td>
<td>137.9</td>
<td>282</td>
<td>8.46</td>
<td>0.32</td>
<td>10.0</td>
<td>848.8</td>
<td>838.8</td>
</tr>
<tr>
<td>6-4</td>
<td>6.9</td>
<td>309.7</td>
<td>781</td>
<td>8.27</td>
<td>0.35</td>
<td>10.9</td>
<td>669.4</td>
<td>658.5</td>
</tr>
</tbody>
</table>

AP = Acid potential in tonnes CaCO3 equivalent per 1000 tonnes of material.

NP = Neutralization potential in tonnes CaCO3 equivalent per 1000 tonnes of material.

NET NP = NP - AP
Figure 2:
Cross-Section Showing Proposed Decline
Prarie Creek Mine

Existing Decline Waste Rock Pad

Drainage Ditches

Decline Waste Rock Pad

Underground Air Compressor

Primary Water Treatment Plant

Mine Water Drainage

870 Level Portal

Ore Pocket

Polishing Pond

Staging area base

Waste rock

Clayey soil pad

 existing decline waste rock pad 1-2_deg

Drawn By: K. Cupit

Scale: As Shown

Canadian Zinc Corporation

Date: April 2011

Dimensions: 900m x 612m

.Vertical dimensions are not to scale.

Looking towards 020

Section A-A' Plan view
Prairie Creek Mine
Proposed Decline Waste Rock Pad

- UNDERGROUND AIR COMPRESSOR
- PRIMARY WATER TREATMENT PLANT
- DRAINAGE DITCHES
- DECLINE WASTE ROCK PAD
- MINE WATER DRAINAGE
- 870 LEVEL PORTAL
- ORE POCKET
- POLISHING POND
- Waste rock from proposed decline
- Waste rock from existing decline (dozed down)
- Clayey soil pad
- Geosynthetic liner with protection

Scale: As Shown

Date: April 2011
Drawn by: K. Dupit
Scale: As Shown

Proposed decline waste rock pad 1-2 draw