Appendix 4

Solid Waste and Landfill Management Plan
Diavik Diamond Mine Solid Waste and Landfill Management Plan

Document #: OPCO-025-0115 R18

January 2015
OVERVIEW

Diavik Diamond Mines (2012) Inc. is committed to ensuring that collection, storage; transportation, treatment and disposal of all wastes generated by the project are conducted in a safe, efficient and environmentally compliant manner. The fundamental basis of the plan is the practical and positive management of wastes, incorporating the implementation of a sound waste minimization/reduction program. This plan is an update of the existing Waste Management Plan Version 17.

REVISION HISTORY

<table>
<thead>
<tr>
<th>REVISION VERSION</th>
<th>AUTHOR</th>
<th>MANAGERIAL APPROVAL</th>
<th>DATE: (MM/DD/YY)</th>
<th>Reason for Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DW</td>
<td></td>
<td>01/16/15</td>
<td>Initial issue</td>
</tr>
</tbody>
</table>

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>COPY</th>
<th>ORGANIZATION</th>
<th>POSITION</th>
<th>FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DDMI</td>
<td>Health, Safety, Environmental Manager</td>
<td>Electronic*</td>
</tr>
<tr>
<td>2</td>
<td>DDMI</td>
<td>President</td>
<td>Electronic*</td>
</tr>
<tr>
<td>3</td>
<td>DDMI</td>
<td>Manager, Mobile Maintenance and Support Services</td>
<td>Electronic*</td>
</tr>
<tr>
<td>4</td>
<td>WLWB</td>
<td>Chair</td>
<td>Electronic</td>
</tr>
</tbody>
</table>

*On DDMI Intranet under HSEQ MS Element 10
Contents page

1. Diavik Diamond Mine 5
 1.1 Effective Date 5
 1.2 Policy 5
 1.2.1 Legislation 5

2. Waste Definition 8
 2.1 Solid Waste 8
 2.1.1 Hazardous Waste 8

3. Waste Sources 10

4. Waste Collection, Storage and Disposal 10

5. Hazardous Waste 11
 5.1 Petroleum Waste 11
 5.1.1 Waste Oil 11
 5.1.2 Hydraulic Fluid 11
 5.1.3 Oil Filters 12
 5.1.4 Contaminated or Out-of-Date Fuels 12
 5.1.5 Soil & Rock Contaminated with Petroleum Product 12
 5.1.6 Snow Contaminated with Petroleum Product 12
 5.1.7 Water Contaminated with Petroleum Product 12
 5.1.8 Oily Rags and Used Absorbent Materials 12
 5.1.9 Grease 12
 5.1.10 Cooking Grease 12
 5.2 Chemicals 12
 5.2.1 Glycol 13
 5.2.2 Batteries 13
 5.2.3 Acids 13
 5.2.4 Solvents 13
5.2.5 Flocculent 13
5.2.6 Freon 13
5.2.7 Fluorescent Light Tubes and Compact Fluorescent Light (CFL’s) Bulbs 13
5.2.8 Aerosol Cans 14
5.2.9 Waste Paint Material 14
5.2.10 Shotcrete Accelerator 14
5.2.11 Laboratory Chemical Wastes 14
5.3 Biological Waste 14
5.4 Sewage Sludge 14

6. Inert Solid Waste 15
6.1.1 Conveyor Belts and Tires 15
6.1.2 Vehicles 15
6.1.3 Plastics 15
6.1.4 Corrugated Cardboard 15
6.1.5 Paper 15
6.1.6 Scrap Metal 15
6.1.7 Waste Lumber 15
6.1.8 Air Filters 16
6.1.9 Buildings 16
6.1.10 Sandblasting Residue 17
6.1.11 Incinerator Ash 17
6.1.12 Solid Domestic Waste 17

7. Waste Transfer Area 18

8. Landfill 18

9. Training 18

10. Reporting 19
Introduction

1. Diavik Diamond Mine

The Diavik Diamond Mine is an unincorporated joint venture established by Diavik Diamond Mine (2012) Incorporated (DDMI) and Dominion Diamond Corporation (DDC). DDMI is a wholly owned subsidiary of Rio Tinto plc of London, England. Under the Joint Venture Agreement, DDMI has a 60% participating interest in the project, and DDC a 40% participating interest. DDMI has been appointed Manager and is the corporate entity responsible for conducting project activities.

The Mine is located approximately 300 kilometres (km) northeast of Yellowknife, NT. The Mine (64° 31’ N, 110° 20’ W) is situated on East Island, a 17 square kilometre (km²) island in Lac de Gras, NT. (Figure 1). All major freight is trucked to the Mine over a seasonal winter road from Yellowknife. Worker access is by aircraft to the Mine's private airstrip.

1.1 Effective Date

This plan is an overview of the various waste related management plans in place at the Mine. This plan is effective January 2015. This plan will be reviewed, and updated if required annually on March 31. The first review will be conducted for March 31, 2016.

Mineral waste such as waste rock and processed kimberlite are covered by their own management plans. In this plan waste shall mean non-mineral waste.

1.2 Policy

Diavik ensures that the collection, storage; transportation and disposal of all wastes generated by the Mine are conducted in a safe, efficient and environmentally compliant fashion. The fundamental basis of the plan is the practical and positive management of wastes, incorporating the implementation of a sound waste minimization program.

The main objectives of this plan are to:

- Create a system for proper disposal of waste;
- Minimize potentially adverse impacts on the physical and biological environment; and,
- Comply with Federal and Northwest Territories (NWT) legislation.

Diavik’s approach to waste management follows the 4R’s (reduce, reuse, recycle, and recover). The 4R’s are embodied within all of our management plans related to waste.

1.2.1 Legislation

This plan was developed to comply with the following legislation:

- Public Health Act
• NWT Environmental Protection Act
• Canadian Environmental Protection Act
• Transportation of Dangerous Goods Act and Regulations
• Workplace Hazardous Materials Information Systems (WHMIS) Safety Act
• Waters Act
• Lands Act
• NWT Pesticide Act
Waste Streams

2. Waste Definition
A material is considered waste when it can no longer be used, reused or recycled. This Plan addresses solid and liquid wastes generated on site that are not covered by specific management plans (i.e., Waste Rock Management Plan). The wastes covered in this plan are either shipped offsite or directed to the onsite landfill for disposal.

2.1 Solid Waste
Solid waste includes garbage, refuse and sludge from water treatment facilities. Examples include: filters, conveyor belts, scrap metals, domestic garbage, and such as sewage sludge from the sewage treatment plant.

2.1.1 Hazardous Waste
The Government of the Northwest Territories Guideline for General Management of Hazardous Waste (February 1998) and Guideline for Industrial Waste Discharges (April 2004) defines hazardous wastes and non-hazardous wastes as follows:

Hazardous Waste: A contaminant which is a dangerous good that is no longer used for its original purpose and is intended for recycling, treatment, disposal or storage. A hazardous waste does not include a contaminant that is:

- Household in origin
- Included in class 1 Explosives, or class 7 Radioactive materials, of Transportation of Dangerous Goods Regulations (TDGR)
- An empty container
- Exempted as a small quantity
- Intended for disposal in a sewage system or landfill that meet the applicable standards set out in schedules I, III or IV of the “Guideline for Industrial Waste Discharges in the NWT.”

The considerations for small quantity hazardous wastes that can be classified under non-hazardous wastes are as follows:

Small Quantity: Hazardous waste that is generated in an amount less than 5 kilograms per month of a solid, or 5 litres per month of a liquid; and where the total quantity accumulated at any one time does not exceed 5 kilograms or 5 litres. This does not apply to mercury or in classes 2.3, 5.1 or 6.1 of TDGR. These wastes must be generated in an amount less than 1 kilogram per month of a solid or 1 litre per month of a liquid; and where the total quantity accumulated at any one time does not exceed 1 kilogram or 1 litre.
Examples of hazardous waste include: waste oil, solvents, paints, used/unused chemicals, batteries and fluorescent light tubes. All hazardous wastes generated at Diavik are shipped offsite to a registered recycling/disposal facility.
Waste Sources, Collection and Disposal

3. Waste Sources
The sources and types of waste generated at the Mine site are presented below in Table 1.

Table 1: Source and Type of Waste Generated at Diavik

<table>
<thead>
<tr>
<th>Source of Waste</th>
<th>Type of Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Handling and Storage Operations</td>
<td>Waste petroleum products, used chemicals</td>
</tr>
<tr>
<td>Sewage Treatment Plant</td>
<td>Biological sludge and grey water</td>
</tr>
<tr>
<td>Equipment Maintenance</td>
<td>Used batteries, engine oil, filters (oil and air), tires,</td>
</tr>
<tr>
<td></td>
<td>scrap metal, glass, hydraulic hoses, aerosol cans, used oils, oily rags,</td>
</tr>
<tr>
<td></td>
<td>used grease, conveyor belts</td>
</tr>
<tr>
<td>Building Maintenance/Demolition</td>
<td>Used transformers, fluorescent lighting tubes and ballasts, glycol, chemicals,</td>
</tr>
<tr>
<td></td>
<td>batteries, smoke detectors, e-waste, material scraps (partitions,</td>
</tr>
<tr>
<td></td>
<td>carpets, plumbing, electrical, glass, insulation)</td>
</tr>
<tr>
<td>Laboratory</td>
<td>Chemical lab wastes, toxic substances, crucibles</td>
</tr>
<tr>
<td>Domestic waste from:</td>
<td>Biological sludge, domestic garbage, oil & food wastes, paper, cardboard,</td>
</tr>
<tr>
<td>• Accommodation building;</td>
<td>aerosol cans, used batteries, sharps</td>
</tr>
<tr>
<td>• Administration offices; and</td>
<td></td>
</tr>
<tr>
<td>• Kitchen</td>
<td></td>
</tr>
<tr>
<td>Surface Operations</td>
<td>Inert waste: cement, sand, used materials (i.e.</td>
</tr>
<tr>
<td></td>
<td>metals, pipes, glass, styrofoam, insulation, etc.), dewatering pipe, wire</td>
</tr>
<tr>
<td>First Aid Facility</td>
<td>Sharps (needles, syringes, scalpel blades), biological wastes (blood, human</td>
</tr>
<tr>
<td></td>
<td>tissue, gauze pads)</td>
</tr>
<tr>
<td>Underground operations</td>
<td>Meyco SA 160 (Shotcrete Accelerator), used oil,</td>
</tr>
<tr>
<td></td>
<td>oily rags, used floor dry, aerosols, paper, wood,</td>
</tr>
<tr>
<td></td>
<td>cardboard, used batteries, scrap metal, plastic, rubber, pipes, used glycol,</td>
</tr>
<tr>
<td></td>
<td>used grease, filters, vent tubing</td>
</tr>
</tbody>
</table>

4. Waste Collection, Storage and Disposal
Waste containers are labelled and available at each facility. All wastes are segregated at point source. Once containers are full they are transported to either the landfill for disposal or the Waste Transfer Area (WTA) for incineration or packaging and storage until shipped offsite. The WTA is designed to store and dispose of site wastes in a practical, safe manner that reduces potential attractants for wildlife.
Hazardous Waste

5. Hazardous Waste

Hazardous wastes generated at Diavik are classified in the Hazardous Materials Management Plan. This plan outlines the methodology for identification, classification and storage of such materials. The plan also defines the safety protocols to be followed and records to be maintained by personnel handling such wastes, including final disposal practices. Section 5 discusses the generation of hazardous wastes, storage and final disposal methodologies.

5.1 Petroleum Waste

Petroleum wastes generated at Diavik consist of used oil, diesel fuel, lubricants and solvents. These wastes are segregated in order to make the individual waste streams easier to reuse or recycle, or to permit recovery of any by-products. Precautions are exercised when handling these materials since their improper release or disposal could adversely affect the environment. Personnel working with these products receive specific safety training for their handling.

5.1.1 Waste Oil

Waste oil generated from servicing vehicles, equipment, and generators is stored in marked, aboveground tanks adjacent to the Lube Storage Building (467,000 L), Powerhouse 1 (96,000 L) and Powerhouse 2 (72,000 L). Smaller volumes are collected in drums and stored at the Waste Transfer Area. All connecting pipes are aboveground, making it easy to inspect for leaks. The Diavik Support Service department undertakes regular monitoring of the tanks and piping.

Transfer of used petroleum products is performed in the lined area of the storage facility. Waste oil not suitable for reuse will be transferred and stored in a horizontal (50,000 L) outdoor insulated tank located at the Backfill Plant. The tank is double walled and located in a lined berm. Waste oil is incinerated using an approved waste oil boiler. The boiler supplements the heat within the Backfill Plant.

Used oil pails that are 20 L or larger are collected separately and will be inspected by Support Services to determine requirements for draining and disposal. Plastic containers that are drained, are cleaned and placed within the inert landfill. Pails that cannot be cleaned are stored at the WTA and shipped off site for disposal at an off-site registered facility.

5.1.2 Hydraulic Fluid

Hydraulic fluid that is not reused is disposed of along with waste petroleum products to an off-site registered facility. Used hydraulic fluid is placed in labelled drums and stored at the WTA or the bulk lube storage area and shipped offsite on the winter road.

Used hydraulic lines are drained and disposed of in the inert landfill.
5.1.3 Oil Filters
Filters are drained for 48 hours following removal. A designated location has been created in the Maintenance Shop for the draining of oil filters. Once drained, the filters are crushed and stored in labelled drums. Full drums are then picked up by the Support Service department, transported to the WTA for storage prior to being shipped off-site to a registered recycling/disposal facility.

5.1.4 Contaminated or Out-of-Date Fuels
For safety, some fuels such as aviation fuel may be condemned because of contamination, or an expired shelf life. These drums are labelled in this manner and may be reused within other fuel burning devices at site that do not have the same specifications as aviation. If fuel cannot be reused on site, it is shipped off-site to a registered recycling facility.

5.1.5 Soil & Rock Contaminated with Petroleum Product
Soil and rock contaminated with petroleum is covered in the Hydrocarbon Impacted Materials Management Plan.

5.1.6 Snow Contaminated with Petroleum Product
Snow contaminated with petroleum is covered in the Hydrocarbon Impacted Materials Management Plan.

5.1.7 Water Contaminated with Petroleum Product
Water contaminated with petroleum is covered in the Hydrocarbon Impacted Materials Management Plan.

5.1.8 Oily Rags and Used Absorbent Materials
All materials used to clean up petroleum products are collected in tipper bins around site, transported to the WTA and stored for onsite incineration.

5.1.9 Grease
Scrubber grease is used as part of the recovery process for diamonds and is mixed with a granular material. Once it is no longer possible to reuse the scrubber grease, it is collected in drums, transported to the WTA and stored prior to being shipped off-site to a registered disposal facility.

Cardboard grease tubes are collected in drums from various areas around site and are taken to the WTA and stored prior to being shipped off-site to a registered disposal facility.

5.1.10 Cooking Grease
Oil and grease from the kitchen is collected in plastic drums and stored indoors. Once the drums are full, they are immediately shipped off site for recycling/disposal.

5.2 Chemicals
In general Diavik does not generate large volumes of chemical waste. Management of those wastes that are generated detailed below.
5.2.1 Glycol
Ethylene glycol is used for heating, vehicles, equipment, and at the airstrip as de-icing fluid. If spilled, the sweet smell of the material could attract and affect wildlife, and have a negative impact on the environment. The glycol waste stream is segregated from other wastes and is stored in marked, aboveground tanks at the Lube Storage Building (50,000 L), Powerhouse 1 (28,000 L) and Powerhouse 2 (30,000 L). Smaller volumes are amounts collected in drums and stored at the WTA. All connecting pipes are aboveground, making it easy to inspect for leaks. The Diavik Support Service department undertakes regular inspections and monitoring.

Transfer of glycol is performed at the Lube Storage Building. Product not suitable for reuse is shipped off-site to a registered disposal facility.

5.2.2 Batteries
Batteries used onsite include lead acid wet-filled, potassium hydroxide (alkaline), nickel-cadmium and lithium. Use of rechargeable batteries is promoted wherever possible. Rechargeable batteries are regularly maintained while in service, and tested prior to disposal to confirm that it is spent. Spent batteries are labelled and stored in a designated location in the WTA until being crated and/or drummed and shipped off-site to a registered recycling/disposal facility. Containers used for battery storage are plastic lined.

5.2.3 Acids
Used acids are stored in approved plastic containers that are contained within enviro-packs at the WTA until shipped off-site to a registered facility for disposal/recycling.

5.2.4 Solvents
Where possible solvents at Diavik have been replaced with non-toxic, citrus-based detergents and are primarily used as degreasing agents in the maintenance shops and other service buildings. These wastes, along with specialty degreasing solvents, are collected and stored at the WTA in labelled leak-proof containers or drums and/or are transferred to larger storage containers if required. in the waste transfer area. Used solvents are are shipped off-site to a registered disposal facility.

5.2.5 Flocculent
Flocculants are used in the Process, Sewage and North Inlet Water Treatment plants as a thickener for tailings or sludge. Spilled flocculent is collected in drums, stored at the WTA and shipped off-site to a registered disposal facility.

5.2.6 Freon
Freon is used in refrigeration units and tends to be re-circulated within equipment. Leaked or spilled Freon is collected in drums stored at the WTA and shipped off-site to a registered disposal facility.

5.2.7 Fluorescent Light Tubes and Compact Fluorescent Light (CFL’s) Bulbs
Fluorescent light tubes and CFL’s contain trace amounts of mercury. Both are collected in plastic lined trays stored at the WTA and shipped off-site to a registered disposal facility.
5.2.8 Aerosol Cans
Aerosol cans are collected in separately in marked containers, crushed, stored at the WTA and shipped off-site to a registered disposal facility.

5.2.9 Waste Paint Material
Used paint cans are collected and allowed to dry in a sea can within the WTA. Cans containing latex paints are incinerated and taken to the landfill for disposal. Cans/containers that held oil-based paints are properly stored at the WTA and shipped off-site to a registered recycle/disposal facility.

5.2.10 Shotcrete Accelerator
Meyco SA 160 (Shotcrete Accelerator) is used as an additive to the Underground shotcrete production process. The product is transported to site in 1,100 L totes. Empty and unusable totes with residual product are stored on surface and shipped off-site to a registered recycle/disposal facility.

5.2.11 Laboratory Chemical Wastes
Laboratory wastes are stored in appropriate containers at the WTA and shipped off-site to a registered recycle/disposal facility.

5.3 Biological Waste
Hazardous biological wastes, such as needles, syringes, scalpels and blood and tissue contaminated items, are generated in the Medic Station. These wastes are properly contained, labelled and stored in a secure area marked “Biohazard” in the Medic Centre until they are removed and incinerated or shipped off-site to a registered disposal facility.

5.4 Sewage Sludge
The biodegradable organic components removed by screening in the sewage treatment plant are dewatered and stored in the designated cell within the WTA and/or Till Pile.
Inert Solid Waste

6. Inert Solid Waste
Inert wastes are generated on site during operations. The bulk of these wastes can be disposed of on site, but some do require shipment off site for reuse or disposal. This category includes items such as vehicles, buildings, plastics, clean paper and wood products, and air filters.

6.1.1 Conveyor Belts and Tires
Re-use of tires is encouraged; some alternate uses for tires are to store materials in the parts lay-down area and to protect roads in turning areas. Used conveyor belts and light vehicle tires are disposed of in the landfill and eventually covered with large quantities of waste rock.

6.1.2 Vehicles
Vehicles and equipment will be driven or back-hauled for reuse/recycle when they are no longer useable. While awaiting backhaul, salvageable vehicles will be stored in a laydown area.

6.1.3 Plastics
Plastic wastes generated are mainly from food packaging, cleaning products and lubricants. Plastic containers that originally contained toxic or hazardous materials are fully drained before being stored in the WTA for off site disposal. Plastic containers that contained non-toxic, non-hazardous materials will be disposed of in the inert landfill. Plastic waste from food containers is incinerated to prevent wildlife attraction.

6.1.4 Corrugated Cardboard
Clean, corrugated cardboard waste is generated mainly from packaging. Cardboard is burned in the designated burn pit within the WTA.

6.1.5 Paper
Paper waste generated consists of office paper, newsprint, and packaging. Shredders shred confidential paper, which may then be re-used as packaging material. Paper reduction is achieved by using e-mail, voice message devices, telephone or verbal communications rather than written whenever possible, and using both sides of the paper when photocopying or printing. Intermediate collection points for recyclable paper are established in office areas. Paper materials are incinerated.

6.1.6 Scrap Metal
This waste stream consists of ferrous and nonferrous scrap metals of various types, which have low recycling price and are hard to recycle. Metal scraps are generated from siding, piping, and other similar items. Scrap metal is disposed of in the landfill.

6.1.7 Waste Lumber
Waste lumber is burned in the designated burn pit in the WTA. Larger pieces are salvaged and stored in laydown areas for use as dunnage.
6.1.8 Air Filters
Air filters are collected in burnable garbage collection bins around site. These filters are taken to the burn pit at the WTA and are burned to reduce their volume prior to being disposed of at the landfill.

6.1.9 Buildings
Buildings that are no longer required and are not suitable for alternative uses are identified for decommissioning. If there is no inherent value in the building it is destroyed and placed in the landfill. If it has value it is not considered waste and is identified for removal from site. Prior to destroying the building all hazardous materials are removed including:

- Thermostats
- Fluorescent light tubes
- Fluorescent light ballasts
- Compact fluorescent light bulbs
- Smoke detectors
- Electronic waste
- Chemicals
- Emergency lighting batteries
- Transformers
- Other products that are restricted from the landfill (food waste, aerosol cans, etc.)

The relatively new age of the buildings at Diavik excludes the possibility of them containing asbestos, lead paint, and vermiculite. Following removal of the above noted items, inspections of the building are conducted by the following:

- Area Owner (manager in charge of the area)
- Building Owner (manager in charge of the building)
- Electrical Supervisor
 - Ensures all power is disconnected
 - Ensures fire alarm system is disabled
 - Removes salvageable equipment
• Mechanical Supervisor
 o Ensures sewage and water tanks are disconnected, if present
 o Ensures fire sprinkler system is disabled
 o Ensures water, sewage, glycol and fuel lines are disconnected and drained
 o Removes salvageable equipment

• IT Supervisor
 o Ensures IT infrastructure is unaffected
 o Removes salvageable equipment

• Environment Department
 o Ensure all materials are removed that are not suitable for the landfill

• Support Services Supervisor
 o Ensures all inspections are completed and documented
 o Ensures conditions are met, if applicable
 o Conducts final walk around of building

The above supervisors all sign-off on a final demolition form prior to the commencement of work. The process cannot proceed until the form is signed.

6.1.10 Sandblasting Residue
Sandblasting operations are carried out to prepare some metal surfaces for coatings. During sandblasting activities, the surrounding areas are shrouded for dust control and all residual materials resulting from the sandblasting are collected and stored in drums in the waste transfer area. For large sandblasting activities, the sandblast residue is stockpiled in a designated area, transferred to a truck and disposed of in the inert landfill.

6.1.11 Incinerator Ash
Ash from the incinerators is collected in bins adjacent to the incinerators themselves. This ash is then transferred to the burn pit to assist in burning operations. When the burn pit is cleaned out, contents are placed in the landfill.

6.1.12 Solid Domestic Waste
Waste that are incinerated (kitchen, offices, lunchrooms, etc.) are discussed in the Incinerator Management Plan.
Infrastructure

7. Waste Transfer Area
The WTA is located adjacent to the perimeter road that leads to the explosives storage area on the southern part of the site. The facility is lined with HDPE material and is surrounded by a gated, chain link and barbed-wire fence erected to control wind transportation of litter and wildlife intrusion. The majority of wastes generated onsite are stored and inventoried at the WTA prior to off site transport on the winter road. Sea cans and sheds are used for storage of labelled items. Covered storage prevents items from being buried by drifting snow, and ensures year-round accessibility. Drums containing waste are labelled appropriately, inventoried, manifested and eventually transported off site.

The following is located within the WTA:

- Contaminated soil containment area;
- Incinerators;
- Burn pit;
- Sewage sludge containment area;
- Chemical storage shipping container;
- Storage areas and sheds for drums, crates, bins, totes, etc.; and,
- Office, lunchroom & washroom facilities.

8. Landfill
The current inert landfill was approved by the Landuse Inspector and is located within the North Country Rock Pile. The landfill is used to dispose of inert solid waste. Upon closure the landfill will be covered with waste rock of a sufficient thickness. Signs and gates are installed at the landfill to restrict access. The landfill is operated by trained personnel from the Support Services Department, with inspection and monitoring being performed regularly. The Environment Department inspects the landfill twice per week during the winters and once per week during the summer. Records are kept regarding findings.

9. Training
All personnel receive training on Diavik’s Waste Management Standard. Responsibility for waste management is assigned to the Support Service Department. Operators are trained to use equipment and follow processes.
10. Reporting

Diavik tracks the volume of wastes delivered to the landfill, incinerator, and burn pit. These records and information can be viewed by the Inspector upon request. All items that are shipped off-site are manifested using Diavik’s specific Waste Generator Registration Number. Completed forms are provided to the Government of the Northwest Territories by the receiving licensed facility.