

APPENDIX 1(a)

DETAILED INCINERATOR RECORDS COLOMAC CAMP - 2019

Date	Kitchen Waste	Other Sources	Cardboard	Cst Mtrl-Brk pallets	Ash - Outgoing
1-Mar-2019	30		5		
5-Mar-2019	25		0		
6-Mar-2019	30	5	0		
7-Mar-2019	55	5	0		
8-Mar-2019	65		0		
9-Mar-2019	63	19	0		
10-Mar-2019	75	10	5	34	
11-Mar-2019	66	7	0		
12-Mar-2019	58		0		
13-Mar-2019	83	16	0		
14-Mar-2019	84	12	0		
15-Mar-2019	107	10	0		
16-Mar-2019	103	6	0		
17-Mar-2019	108	3	5		
18-Mar-2019	101	14	0		
19-Mar-2019	89	2	0		
20-Mar-2019	85	6	0	28	
21-Mar-2019	105	12	0	18	
22-Mar-2019	78	8	0		
23-Mar-2019	110	7	0		
24-Mar-2019	69	20	0	56	
25-Mar-2019	85	10	0	0	
26-Mar-2019	0	0	0	0	
27-Mar-2019	125	7	0	0	
28-Mar-2019	95	24	0	0	
29-Mar-2019	105	16	0	10	
30-Mar-2019	98	20	0	0	
31-Mar-2019	137	3	0	0	
	2234	242	15	146	0
1-Apr-2019	113	5	10	0	
2-Apr-2019	126	0	0	0	
3-Apr-2019	102	20	5	0	
4-Apr-2019	121	28	0	0	
5-Apr-2019	102	0	0	0	
6-Apr-2019	220	16	5	0	
7-Apr-2019	104	0	0	0	
8-Apr-2019	140	3	0	8	
9-Apr-2019	123	7	0	0	
10-Apr-2019	0	0	0	0	
11-Jan-1900	210	34	0	0	
12-Apr-2019	164	0	5	0	
13-Apr-2019	132	11	0	0	
14-Apr-2019	141	5	0	0	
15-Apr-2019	115	10	0	0	
16-Apr-2019	101	0	0	0	
17-Apr-2019	54	13	0	0	
18-Apr-2019	189	5	0	43	
19-Apr-2019	61	0	0	0	
20-Apr-2019	47	0	0	0	
21-Apr-2019	88	5	0	0	
22-Apr-2019	88	5	0	10	

Date	Kitchen Waste	Other Sources	Cardboard	Cst Mtrl-Brk pallets	Ash - Outgoing
23-Apr-2019	77	0	0	0	
24-Apr-2019	19	0	0	0	
25-Apr-2019	127	5	0	0	
26-Apr-2019	54	0	0	0	
27-Apr-2019	85	0	0	0	
28-Apr-2019	62	0	0	0	
29-Apr-2019	62	0	0	0	
	3027	172	25	61	0
1-May-2019	124	0	0	0	
2-May-2019	107	0	0	0	
3-May-2019	103	4	0	0	
4-May-2019	98		0	0	
5-May-2019	97	15	0	0	
6-May-2019	62	10	0	10	
7-May-2019	396	0	0	24	
8 May 2019	74	10	5	24	
0 May 2019	52	10	<u> </u>	0	
10 May 2019	107	10	0	0	
10-May-2019	107	0	0	0	
11-May-2019	00	<u> </u>	0	0	
12-May-2019	132	5	0	30	
13-May-2019	92	9	0	0	
14-May-2019	76	0	0	10	
15-May-2019	268	0	5	10	
16-May-2019	56	12	0	10	
17-May-2019	245	10	0	11	
18-May-2019	130	0	5	41	
19-May-2019	150	0	0	20	
20-May-2019	85	10	0	0	
21-May-2019	157	10	0	30	
22-May-2019	105	0	0	12	
23-May-2019	0	0	0	0	2
24-May-2019					
25-May-2019	104	185	0	136	
26-May-2019	99	30	0	27	
27-May-2019					
28-May-2019					
29-May-2019	134	10			
30-May-2019	94	0	0	0	
31-May-2019	107	0	0	0	
	3339	340	15	371	2
1 1	-				
1-Jun-2019	111	50	0	0	
2-JUN-2019	41	6	0	0	
3-JUN-2019	96	15	0	10	
4-Jun-2019	64	15	0	0	
5-Jun-2019	70	0	0	0	
6-Jun-2019	85	0	0	0	
7-Jun-2019	62	0	0	0	
8-Jun-2019	138	0	0	0	
9-Jun-2019	76	5	0	0	
10-Jun-2019	94	0	0	0	

Date	Kitchen Waste	Other Sources	Cardboard	Cst Mtrl-Brk pallets	Ash - Outgoing
11-Jun-2019	103	0	0	0	
12-Jan-1900	0	0	0	0	
13-Jan-1900	146	29	0	0	
14-Jan-1900	169	3	0	0	
15-Jan-1900	105	0	29	105	
16-Jun-2019	108	20	0	0	
17-Jun-2019	97	3	0	23	
18-Jun-2019	0	0	0	20	
19-Jun-2019	165	15	5	0	
20-Jun-2019	106	0	0	0	
21-Jun-2019	244	0	0	0	
22-Jun-2019	83	12	0	0	
23-Jun-2019					
24-Jun-2019	0	0	0	0	
25-Jun-2019	197	17	0	387	
26-Jun-2019	153	0	0	307	
27-Jun-2019	105	10	0	25	
28-Jun-2019	140	10	5	0	
29-Jun-2019	163	9	0	0	
30-Jun-2019	65	10	0	0	
	2986	229	39	877	0
	2300	LLJ		011	•
1-Jul-2019	135	0	5	0	
2-Jul-2019	100	0	0	0	
3-Jul-2019	60	19	0	0	
4-Jul-2019	220	10	0	0	
5-Jul-2019	137	20	0	0	
6-Jul-2019	90	0	0	70	
7-Jul-2019	138	23	0	0	
8-Jul-2019					
9-Jul-2019	124	4	5	0	
10-Jul-2019	124	17	0	0	
11-Jul-2019	105	28	0	10	
12-Jul-2019	133	4	0	0	
13-Jul-2019	138	17	10	0	
14-Jul-2019	70	7	0	0	
15-Jul-2019	76	0	0	0	
16-Jul-2019	175	15	0	0	
17-Jul-2019	0	0	0	0	
18-Jul-2019	110	10	0	0	
19-Jul-2019	170	20	0	0	
20-Jul-2019	120	0	0	0	
21-Jul-2019	120	0	0	0	
22-Jul-2019	90	17	0	0	
23-Jul-2019	130	12	0	0	
24-Jul-2019	107	0	0	0	
25-Jul-2019	95	0	0	0	
26-Jul-2019	203	5	0	0	
27-Jul-2019	110	12	0	0	
28-Jul-2019	190	9	0	0	
29-Jul-2019	130	18	0	<u> </u>	
30-Jul-2019	123	0	0	0	

Date	Kitchen Waste	Other Sources	Cardboard	Cst Mtrl-Brk pallets	Ash - Outgoing
31-Jul-2019	146	13	0	0	700
	3669	280	20	127	700
1-Aug-2019	156	6	0	0	
2-Aug-2019	161	13	5	0	
3-Aug-2019	107	19	0	119	
4-Aug-2019	152	14	0	0	
5-Aug-2019	98	0	0	10	
6-Aug-2019	115	15	7	36	
7-Aug-2019	114	6	0	42	
8-Aug-2019	149	19	0	10	
9-Aug-2019	70	16	0	5	
10-Aug-2019	96	15	0	30	
11-Aug-2019	95	5	0	0	
12-Aug-2019	74	0	0	0	
13-Aug-2019	0	0	0	0	
14-Aug-2019	118	8	0	20	
15-Aug-2019	54	0	0	0	
16-Aug-2019	110	9	0	0	
17-Aug-2019	83	0	5	0	
18-Aug-2019	143	25	0	0	
19-Aug-2019	0	0	0	0	
20-Aug-2019	0	15	0	0	
21-Aug-2019	170	0	0	0	
22-Aug-2019	110	5	0	40	
23-Aug-2019	129	25	0	.0	
24-Aug-2019	62	8	0	0	
25-Aug-2019	56	20	0	0	
26-Aug-2019	65	12	0	0	
27-Aug-2019	230	12	5	0	
28-Aug-2019	0	0	0	0	
29-Aug-2019	160	7	0	0	
30-Aug-2019	130	7	5	0	
31-Aug-2019	79		0	20	
017/03/2010	3086	291	27	332	0
	0000	201		002	v
1-Sep-2019	113	3	0	0	
2-Sep-2019	88	17	0	0	
3-Sep-2019	87	12	0	0	
4-Sep-2019	143	10	0	10	
5-Sep-2019	110	10	0	0	
6-Sep-2019	127	15	0	0	
7-Sep-2019	128	.0	0	0	
8-Sep-2019	145	28	0	0	
9-Sep-2019	92	25	5	0	
10-Sep-2019	100	19	0	0	
11-Sep-2019	138	31	0	0	
12-Sen-2019	126	22	0	0	
13-Sen-2019	106	20	5	0	
14-Sen-2010	116	20 46	0	0	
15-Sen-2019	111	20	0	<u> </u>	
16-Sep-2019	105	5	0		

Date	Kitchen Waste	Other Sources	Cardboard	Cst Mtrl-Brk pallets	Ash - Outgoing
17-Sep-2019	157	50	0	0	
18-Sep-2019	126	10	0	0	
19-Sep-2019	121	30	0	0	
20-Sep-2019	166	15	0	0	
21-Sep-2019	105	47	0	0	
22-Sep-2019	117	17	0	30	
23-Sep-2019	87	9	5	0	
24-Sep-2019	120	32	0	0	
25-Sep-2019	106	10	0	0	
26-Sep-2019	97	11	10	0	
27-Sep-2019	87	6	10	0	
28-Sep-2019	82	27	10	0	
29-Sep-2019	89	57	10	0	
30-Sep-2019	96	49	0	30	
	3408	658	55	110	0
1-Oct-2019	81	8	0	0	
2-Oct-2019	115	26	0	0	182
3-Oct-2019	161	15	0	0	
4-Oct-2019	129	10	0	0	
5-Oct-2019	213	68	0	0	
	699	127	0	0	182
	22,448	2,339	196	2,024	884

APPENDIX 1(b)

ALS Certificate of Analysis of Incinerator Waste Ash COLOMAC CAMP - 2019

Pre-Pay Clients - Vancouver ATTN: DR. MICHAEL BYRON Nighthawk Gold 430 WESTMOUNT AVENUE, UNIT F SUDBURY ON P3A 5Z8 Date Received:24-MAY-19Report Date:21-JUN-19 13:49 (MT)Version:FINAL

Client Phone: 705-507-2398

Certificate of Analysis

Lab Work Order #: L2279473 Project P.O. #: NOT SUBMITTED Job Reference: COLOMAC INCINERATOR C of C Numbers: Legal Site Desc:

Rojina/Ghavami Account Manager [This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2279473 CONTD.... PAGE 2 of 8 21-JUN-19 13:49 (MT) Version: FINAL

Grouping	Sample ID Description Sampled Date Sampled Time Client ID Analyte	L2279473-1 WASTE 19-MAY-19 15:30 N934951 COLOMAC INCINERATOR ASH		
SOIL	-			
Physical Tests	% Moisture (%)	-0.10		
TCLP Metals	1st Preliminary pH (pH)	11 18		
	2nd Preliminary pH (pH)	10.08		
	Final pH (pH)	9.76		
	Extraction Solution Initial pH (pH)	2.87		
	Antimony (Sb)-Leachable (mg/L)	<1.0		
	Arsenic (As)-Leachable (mg/L)	<1.0		
	Barium (Ba)-Leachable (mg/L)	<2.5		
	Beryllium (Be)-Leachable (mg/L)	<0.025		
	Boron (B)-Leachable (mg/L)	1.63		
	Cadmium (Cd)-Leachable (mg/L)	<0.050		
	Calcium (Ca)-Leachable (mg/L)	448		
	Chromium (Cr)-Leachable (mg/L)	0.95		
	Cobalt (Co)-Leachable (mg/L)	<0.050		
	Copper (Cu)-Leachable (mg/L)	<0.050		
	Iron (Fe)-Leachable (mg/L)	<5.0		
	Lead (Pb)-Leachable (mg/L)	<0.25		
	Magnesium (Mg)-Leachable (mg/L)	156		
	Mercury (Hg)-Leachable (mg/L)	<0.0010		
	Nickel (Ni)-Leachable (mg/L)	<0.25		
	Selenium (Se)-Leachable (mg/L)	<1.0		
	Silver (Ag)-Leachable (mg/L)	<0.050		
	Thallium (TI)-Leachable (mg/L)	<1.0		
	Vanadium (V)-Leachable (mg/L)	<0.15		
	Zinc (Zn)-Leachable (mg/L)	<0.50		

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2279473 CONTD.... PAGE 3 of 8 21-JUN-19 13:49 (MT) Version: FINAL

	Sample I Descriptio Sampled Da Sampled Tim Client	D L2279473-1 on WASTE te 19-MAY-19 ne 15:30 N934951 COLOMAC INCINERATOR		
Grouping	Analyte	ASH		
SOLID				
Dioxins and Furans	2,3,7,8-TCDD (pg/g)	<0.31		
	1,2,3,7,8-PeCDD (pg/g)	^{м,J} 1.24		
	1,2,3,4,7,8-HxCDD (pg/g)	0.80		
	1,2,3,6,7,8-HxCDD (pg/g)	1.25 ^{M,J}		
	1,2,3,7,8,9-HxCDD (pg/g)	^{м,J} 1.17		
	1,2,3,4,6,7,8-HpCDD (pg/g)	3.97 ^[J]		
	OCDD (pg/g)	5.32 J,B		
	Total-TCDD (pg/g)	8.71		
	Total TCDD # Homologues	4		
	Total-PeCDD (pg/g)	13.3		
	Total PeCDD # Homologues	5		
	Total-HxCDD (pg/g)	7.45		
	Total HxCDD # Homologues	3		
	Total-HpCDD (pg/g)	8.13		
	Total HpCDD # Homologues	2		
	2,3,7,8-TCDF (pg/g)	^[J] 5.28		
	1,2,3,7,8-PeCDF (pg/g)	^[J] 6.35		
	2,3,4,7,8-PeCDF (pg/g)	^[J] 8.19		
	1,2,3,4,7,8-HxCDF (pg/g)	^[J] 4.58		
	1,2,3,6,7,8-HxCDF (pg/g)	^[J] 5.20		
	1,2,3,7,8,9-HxCDF (pg/g)	^{М,Ј,В} 1.84		
	2,3,4,6,7,8-HxCDF (pg/g)	^[J] 5.44		
	1,2,3,4,6,7,8-HpCDF (pg/g)	7.78 J,B		
	1,2,3,4,7,8,9-HpCDF (pg/g)	^{M,J,R}		
	OCDF (pg/g)	2.02 J,B		
	Total-TCDF (pg/g)	129		
	Total TCDF # Homologues	18		
	Total-PeCDF (pg/g)	79.9		
	Total PeCDF # Homologues	12		
	Total-HxCDF (pg/g)	34.8		
	Total HxCDF # Homologues	7		
	Total-HpCDF (pg/g)	9.06		
	Total HpCDF # Homologues	2		
	Surrogate: 13C12-2,3,7,8-TCDD (%)	110.0		
	Surrogate: 13C12-1,2,3,7,8-PeCDD (%)	88.0		
	Surrogate: 13C12-1,2,3,4,7,8-HxCDD (%)	80.0		
	Surrogate: 13C12-1,2,3,6,7,8-HxCDD (%)	82.0		

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2279473 CONTD.... PAGE 4 of 8 21-JUN-19 13:49 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2279473-1 WASTE 19-MAY-19 15:30 N934951 COLOMAC INCINERATOR ASH		
Grouping	Analyte			
SOLID				
Dioxins and Furans	Surrogate: 13C12-1,2,3,4,6,7,8-HpCDD (%)	78.0		
	Surrogate: 13C12-OCDD (%)	57.0		
	Surrogate: 13C12-2,3,7,8-TCDF (%)	88.0		
	Surrogate: 13C12-1,2,3,7,8-PeCDF (%)	84.0		
	Surrogate: 13C12-2,3,4,7,8-PeCDF (%)	81.0		
	Surrogate: 13C12-1,2,3,4,7,8-HxCDF (%)	76.0		
	Surrogate: 13C12-1,2,3,6,7,8-HxCDF (%)	81.0		
	Surrogate: 13C12-2,3,4,6,7,8-HxCDF (%)	78.0		
	Surrogate: 13C12-1,2,3,7,8,9-HxCDF (%)	75.0		
	Surrogate: 13C12-1,2,3,4,6,7,8-HpCDF (%)	71.0		
	Surrogate: 13C12-1,2,3,4,7,8,9-HpCDF (%)	82.0		
	Surrogate: 37Cl4-2,3,7,8-TCDD (Cleanup) (%)	96.0		
Toxic Equivalency	Lower Bound PCDD/F TEQ (WHO 2005) (pg/g)	6.48		
	Mid Point PCDD/F TEQ (WHO 2005) (pg/g)	6.73		
	Upper Bound PCDD/F TEQ (WHO 2005)	6.89		

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2279473 CONTD.... PAGE 5 of 8 21-JUN-19 13:49 (MT) Version: FINAL

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Total-HpCDF	А	L2279473-1
Comments:	Blank has low levels of select targets that were within the rewhere indicated	eference meth	nod control limits. Low level sample data may be elevated
Method Blank	Total-HxCDF	А	L2279473-1
Comments:	Blank has low levels of select targets that were within the rewhere indicated	eference meth	nod control limits. Low level sample data may be elevated
Duplicate	1,2,3,4,6,7,8-HpCDF	G	L2279473-1
Comments:	Sample and duplicate are outside method RPD criteria for a particles and is not homogeneous.	select targets.	. Sample consists of grey ash with white and black
Duplicate	1,2,3,4,7,8-HxCDF	G	L2279473-1
Comments:	Sample and duplicate are outside method RPD criteria for a particles and is not homogeneous.	select targets.	. Sample consists of grey ash with white and black
Duplicate	1,2,3,6,7,8-HxCDF	G	L2279473-1
Comments:	Sample and duplicate are outside method RPD criteria for a particles and is not homogeneous.	select targets.	. Sample consists of grey ash with white and black
Duplicate	1,2,3,7,8-PeCDD	G	L2279473-1
Comments:	Sample and duplicate are outside method RPD criteria for a particles and is not homogeneous.	select targets.	. Sample consists of grey ash with white and black
Duplicate	1,2,3,7,8-PeCDF	G	L2279473-1
Comments:	Sample and duplicate are outside method RPD criteria for a particles and is not homogeneous.	select targets.	. Sample consists of grey ash with white and black
Duplicate	2,3,4,6,7,8-HxCDF	G	L2279473-1
Comments:	Sample and duplicate are outside method RPD criteria for particles and is not homogeneous.	select targets.	. Sample consists of grey ash with white and black
Duplicate	2,3,4,7,8-PeCDF	G	L2279473-1
Comments:	Sample and duplicate are outside method RPD criteria for particles and is not homogeneous.	select targets.	. Sample consists of grey ash with white and black
Duplicate	2,3,7,8-TCDF	G	L2279473-1
Comments:	Sample and duplicate are outside method RPD criteria for particles and is not homogeneous.	select targets.	. Sample consists of grey ash with white and black
Duplicate	OCDF	G	L2279473-1
Comments:	Sample and duplicate are outside method RPD criteria for a particles and is not homogeneous.	select targets.	Sample consists of grey ash with white and black
Duplicate	I otal-HpCDF	G l	L22/94/3-1
Comments:	particles and is not homogeneous.	C	
Commenter	Sample and duplicate are outside method RPD criteria for	G Select targets	Sample consists of arey ash with white and black
Duplicato	particles and is not homogeneous.	C	
Commonte:	Sample and duplicate are outside method RPD criteria for	select targets	Sample consists of arey ash with white and black
Duplicato	particles and is not homogeneous.	C	
Commenter	Sample and duplicate are outside method RPD criteria for	elect targets	Sample consists of area ash with white and black
Duplicate	particles and is not homogeneous.		
Comments:	Sample and duplicate are outside method RPD criteria for	select targets	Sample consists of grey ash with white and black
comments.	particles and is not homogeneous.	boloot langolo.	
Duplicate	1,2,3,4,7,8-HxCDD	J,G	L2279473-1
Comments:	Sample and duplicate are outside method RPD criteria for a particles and is not homogeneous.	select targets.	. Sample consists of grey ash with white and black
Duplicate	1,2,3,7,8,9-HxCDF	J,G	L2279473-1
Comments:	Sample and duplicate are outside method RPD criteria for a particles and is not homogeneous.	select targets.	. Sample consists of grey ash with white and black
Method Blank	1,2,3,4,6,7,8-HpCDF	M,J	L2279473-1
Comments:	Blank has low levels of select targets that were within the rewhere indicated	eference meth	nod control limits. Low level sample data may be elevated
Method Blank	1,2,3,4,7,8,9-HpCDF	M,J	L2279473-1
Comments:	Blank has low levels of select targets that were within the rewhere indicated	eference meth	nod control limits. Low level sample data may be elevated
Method Blank	1,2,3,7,8,9-HxCDF	M,J	L2279473-1

L2279473 CONTD.... PAGE 6 of 8 21-JUN-19 13:49 (MT) Version: FINAL

		Parameter	Qualifier	Applies to Sample Number(s)
Comments:	Blank has low levels where indicated	of select targets that were within the r	eference meth	nod control limits. Low level sample data may be elevated
Method Blank		1,2,3,4,6,7,8-HpCDD	M,J,R	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the	eference meth	nod control limits. Low level sample data may be elevated
Method Blank		1,2,3,6,7,8-HxCDD	M,J,R	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the r	eference meth	nod control limits. Low level sample data may be elevated
Method Blank		1,2,3,7,8,9-HxCDD	M,J,R	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the r	eference meth	nod control limits. Low level sample data may be elevated
Method Blank		1,2,3,7,8-PeCDD	M,J,R	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the i	reference metr	nod control limits. Low level sample data may be elevated
Method Blank	Disable s la sila sila	1,2,3,7,8-PeCDF	M,J,R	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the i	reference metr	hod control limits. Low level sample data may be elevated
Method Blank	D I I I I I I I	2,3,4,6,7,8-HxCDF	M,J,R	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the i	reference metr	nod control limits. Low level sample data may be elevated
Method Blank		2,3,4,7,8-PeCDF	M,J,R	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the i	reference metr	nod control limits. Low level sample data may be elevated
Matrix Spike		Calcium (Ca)-Leachable	MS-B	L2279473-1
Method Blank	Disable s la sila sila	OCDD	[J]	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the i	reference metr	hod control limits. Low level sample data may be elevated
Method Blank		OCDF	[J]	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the i	reference metr	nod control limits. Low level sample data may be elevated
Method Blank	5	1,2,3,4,7,8-HxCDD	[U]	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the i	reference metr	hod control limits. Low level sample data may be elevated
Method Blank	Disable s la sila sila	1,2,3,4,7,8-HxCDF	[U]	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the i	reference metr	hod control limits. Low level sample data may be elevated
	Diank has low lovals	1,2,3,6,7,8-HXCDF	[U] voforonoo moth	L2279473-1
Comments:	where indicated			Lograda a
	Blank has low lovels	2,3,7,6-1CDD	[U] coforonco moti	LZZ/94/3-1
Comments:	where indicated			L 2270472 4
	Blank has low lovels	2,3,7,0-1CDF	[U] coforonco moti	LZZ/94/3-1
Comments:	where indicated	of select targets that were within the	elerence men	iou control nimits. Low level sample data may be elevated
Method Blank		Total-HpCDD	[U]	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the r	eference meth	nod control limits. Low level sample data may be elevated
Method Blank		Total-HxCDD	[U]	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the r	eference meth	nod control limits. Low level sample data may be elevated
Method Blank		Total-PeCDD	[U]	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the r	eference meth	nod control limits. Low level sample data may be elevated
Method Blank		Total-PeCDF	[U]	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the r	eference meth	nod control limits. Low level sample data may be elevated
Method Blank		Total-TCDD	[U]	L2279473-1
Comments:	Blank has low levels where indicated	of select targets that were within the r	eference meth	nod control limits. Low level sample data may be elevated

Method Blank			Total-TCDF	[U]	L2279473-1
Comm	ents: Blanl wher	< has low le e indicated	vels of select targets that were withi	n the reference me	thod control limits. Low level sample data may be eleva
Qualifiers for	Individual Pa	arameters I	∟isted:		
Qualifier	Description	i			
A	Method Bla	ink exceeds	ALS DQO. Refer to narrative com	ments for further inf	ormation.
G	QC result c	lid not mee	t ALS DQO. Refer to narrative comr	ments for further inf	ormation.
J,B	The analyte concentrati	e was detector.	ted below the calibrated range but a	bove the EDL, and	was detected in the Method Blank at >10% of the sam
J,G	QC result c difference.	lid not meet	t ALS DQO. Refer to narrative comr	nents for further inf	ormation. Duplicate expressed in terms of absolute
M,J	A peak has	been man	ually integrated, and the analyte was	detected below the	e calibrated range but above the EDL.
M,J,B	A peak has detected in	been man the methor	ually integrated. Target analyte was d blank at >10% of the sample conce	detected below the entration.	calibrated range but above the EDL. Compound was
M,J,R	A peak has ratio(s) did	been man not meet th	ually integrated, the analyte was detended and the acceptance criteria. Value is an example a comparison of the second se	ected below the cal stimated maximum.	ibrated range but above the EDL, and the ion abundan
MS-B	Matrix Spik	e recovery	could not be accurately calculated d	ue to high analyte b	background in sample.
[J]	The analyte	e was detec	ted below the calibrated range but a	bove the EDL.	
[U]	The analyte	e was not de	etected above the EDL.		
est Method F	References:				
LS Test Code)	Matrix	Test Description		Method Reference**
DX-1613B-HRM	IS-BU	Solid	Dioxins and Furans HR 1613B		USEPA 1613B
Samples are e GC/HRMS.	extracted by S	oxhlet. The	extracts are prepared using column	chromatography, re	educed in volume and analyzed by isotope-dilution
IG-TCLP-CVA	FS-VA	Soil	Mercury by CVAAS (TCLP)		EPA 1311/245.7
This analysis i Methods Volu extracted at a fluid #2 (glacia analysed usin	is carried out i me 1C" SW-8- 20:1 liquid to al acetic acid), g atomic abso	n accordance 46 EPA Met solids ratio depending	ce with the extraction procedure outl thod 1311, published by the United S for 16 to 20 hours using either extra on the pH of the original sample. The traphotometry (EDA 245.7)	ined in "Test Metho States Environment ction fluid #1 (glacia he extract is then fil	eds for Evaluating Solid Waste - Physical/Chemical al Protection Agency (EPA). In summary, the sample i al acetic acid, water and sodium hydroxide) or extractio tered through a 0.6 to 0.8 micron glass fibre filter and
NET-TCLP-CC	-	ipilon speci	(CFA 245.7).		
	MS-VA	Soil	Metals by ICPMS (TCLP)		EPA 1311/6020A
This analysis Methods Volu extracted at a fluid #2 (glacia Instrumental a	MS-VA is carried out i me 1C" SW-8- 20:1 liquid to al acetic acid), analysis of the	Soil n accordan 46 EPA Me solids ratio depending digested ex	Metals by ICPMS (TCLP) ce with the extraction procedure outl thod 1311, published by the United \$ for 16 to 20 hours using either extract on the pH of the original sample. Th tract is by collision cell inductively c	lined in "Test Metho States Environment ction fluid #1 (glacia he extract is then fil oupled plasma - ma	EPA 1311/6020A ods for Evaluating Solid Waste - Physical/Chemical al Protection Agency (EPA). In summary, the sample al acetic acid, water and sodium hydroxide) or extractio tered through a 0.6 to 0.8 micron glass fibre filter. ass spectrometry (modifed from EPA Method 6020A).
This analysis Methods Volu extracted at a fluid #2 (glacia Instrumental a MOISTURE-BU	MS-VA is carried out i me 1C" SW-84 20:1 liquid to al acetic acid), analysis of the J	Soil n accordand 46 EPA Me solids ratio depending digested ex Soil	Metals by ICPMS (TCLP) ce with the extraction procedure outl thod 1311, published by the United S for 16 to 20 hours using either extract on the pH of the original sample. The tract is by collision cell inductively c % Moisture	lined in "Test Methc States Environment ction fluid #1 (glacia he extract is then fil oupled plasma - ma	EPA 1311/6020A ds for Evaluating Solid Waste - Physical/Chemical al Protection Agency (EPA). In summary, the sample al acetic acid, water and sodium hydroxide) or extractio tered through a 0.6 to 0.8 micron glass fibre filter. ass spectrometry (modifed from EPA Method 6020A). CCME PHC in Soil - Tier 1 (mod)
This analysis Methods Volu extracted at a fluid #2 (glacia Instrumental a MOISTURE-BU This method is constant mass used to determ	MS-VA is carried out i me 1C" SW-8 20:1 liquid to i al acetic acid), analysis of the J s used to dete s is achieved. nine the moist	Soil n accordand 46 EPA Me solids ratio depending digested ex Soil rmine the p The residue ure content	Metals by ICPMS (TCLP) ce with the extraction procedure outl thod 1311, published by the United S for 16 to 20 hours using either extrac on the pH of the original sample. Ti (tract is by collision cell inductively c % Moisture ercent moisture in a sample. Sample is are measured gravimetrically and . This percent moisture can be used	lined in "Test Metho States Environment ction fluid #1 (glacia he extract is then fil oupled plasma - ma es are homogenized the difference in we , in conjunction with	EPA 1311/6020A ds for Evaluating Solid Waste - Physical/Chemical al Protection Agency (EPA). In summary, the sample al acetic acid, water and sodium hydroxide) or extractio tered through a 0.6 to 0.8 micron glass fibre filter. ass spectrometry (modifed from EPA Method 6020A). CCME PHC in Soil - Tier 1 (mod) d, moisture is removed by heating at 105°C until eight between the wet sample and the dried sample is n analytical results, to report data on a dry weight basis
This analysis Methods Volu extracted at a fluid #2 (glacia Instrumental a MOISTURE-BL This method is constant mass used to determ ALS test meth	MS-VA is carried out i me 1C" SW-8- 20:1 liquid to a al acetic acid), analysis of the J s used to dete s is achieved. mine the moist ods may incor	Soil n accordand 46 EPA Me solids ratio depending digested ex Soil rmine the p The residue ure content porate mod	Metals by ICPMS (TCLP) ce with the extraction procedure outl thod 1311, published by the United \$ for 16 to 20 hours using either extract on the pH of the original sample. TI (tract is by collision cell inductively c % Moisture ercent moisture in a sample. Sample as are measured gravimetrically and . This percent moisture can be used ifications from specified reference m	lined in "Test Metho States Environment ction fluid #1 (glacia he extract is then fil oupled plasma - ma es are homogenized the difference in we i, in conjunction with nethods to improve	EPA 1311/6020A ds for Evaluating Solid Waste - Physical/Chemical al Protection Agency (EPA). In summary, the sample is al acetic acid, water and sodium hydroxide) or extraction tered through a 0.6 to 0.8 micron glass fibre filter. ass spectrometry (modifed from EPA Method 6020A). CCME PHC in Soil - Tier 1 (mod) d, moisture is removed by heating at 105°C until eight between the wet sample and the dried sample is n analytical results, to report data on a dry weight basis performance.
This analysis Methods Volu extracted at a fluid #2 (glacia Instrumental a MOISTURE-BL This method is constant mass used to detern ALS test meth	MS-VA is carried out i me 1C" SW-8- 20:1 liquid to a al acetic acid), analysis of the J s used to dete s is achieved. inine the moist ods may incor ters of the abo	Soil n accordand 46 EPA Mer solids ratio depending digested ex Soil rmine the p The residue ure content porate mod	Metals by ICPMS (TCLP) ce with the extraction procedure outl thod 1311, published by the United \$ for 16 to 20 hours using either extract on the pH of the original sample. TI stract is by collision cell inductively c % Moisture ercent moisture in a sample. Sample as are measured gravimetrically and . This percent moisture can be used ilifications from specified reference m fe(s) indicate the laboratory that perform	lined in "Test Metho States Environment ction fluid #1 (glacia he extract is then fil oupled plasma - ma es are homogenized the difference in we l, in conjunction with nethods to improve formed analytical an	EPA 1311/6020A dds for Evaluating Solid Waste - Physical/Chemical al Protection Agency (EPA). In summary, the sample al acetic acid, water and sodium hydroxide) or extractio tered through a 0.6 to 0.8 micron glass fibre filter. ass spectrometry (modifed from EPA Method 6020A). CCME PHC in Soil - Tier 1 (mod) d, moisture is removed by heating at 105°C until eight between the wet sample and the dried sample is n analytical results, to report data on a dry weight basis performance. malysis for that test. Refer to the list below:
This analysis Methods Volu extracted at a fluid #2 (glacia Instrumental a MOISTURE-BL This method is constant mass used to deterr ALS test meth The last two let	MS-VA is carried out i me 1C" SW-8- 20:1 liquid to : al acetic acid), analysis of the J s used to dete s is achieved. nine the moist ods may incor ters of the abc	Soil n accordand 46 EPA Mer solids ratio depending digested ex Soil rmine the p The residue ure content porate mod we test cod	Metals by ICPMS (TCLP) ce with the extraction procedure outl thod 1311, published by the United S for 16 to 20 hours using either extrac on the pH of the original sample. TI (tract is by collision cell inductively c % Moisture ercent moisture in a sample. Sample as are measured gravimetrically and . This percent moisture can be used lifications from specified reference m 'e(s) indicate the laboratory that perfor itory Location	lined in "Test Metho States Environment ction fluid #1 (glacia he extract is then fil oupled plasma - ma es are homogenized the difference in we l, in conjunction with nethods to improve	EPA 1311/6020A dds for Evaluating Solid Waste - Physical/Chemical al Protection Agency (EPA). In summary, the sample is al acetic acid, water and sodium hydroxide) or extraction tered through a 0.6 to 0.8 micron glass fibre filter. ass spectrometry (modifed from EPA Method 6020A). CCME PHC in Soil - Tier 1 (mod) d, moisture is removed by heating at 105°C until eight between the wet sample and the dried sample is analytical results, to report data on a dry weight basis performance. malysis for that test. Refer to the list below:
This analysis Methods Volu extracted at a fluid #2 (glacia Instrumental a NOISTURE-BL This method is constant mass used to deterr ALS test meth The last two let -aboratory Det 3U	MS-VA is carried out i me 1C" SW-8- 20:1 liquid to al acetic acid), analysis of the J s used to dete s is achieved. mine the moist ods may incor ters of the abc	Soil n accordan 46 EPA Me solids ratio depending digested ex Soil rmine the p The residue ure content porate mod we test cod Labora ALS EN	Metals by ICPMS (TCLP) ce with the extraction procedure outl thod 1311, published by the United S for 16 to 20 hours using either extract on the pH of the original sample. TI «tract is by collision cell inductively c % Moisture ercent moisture in a sample. Sample s are measured gravimetrically and . This percent moisture can be used lifications from specified reference m 'e(s) indicate the laboratory that perfor tory Location	lined in "Test Metho States Environment ction fluid #1 (glacia he extract is then fil coupled plasma - ma es are homogenized the difference in we l, in conjunction with nethods to improve formed analytical and DNTARIO, CANAD	EPA 1311/6020A dds for Evaluating Solid Waste - Physical/Chemical al Protection Agency (EPA). In summary, the sample al acetic acid, water and sodium hydroxide) or extraction tered through a 0.6 to 0.8 micron glass fibre filter. ass spectrometry (modifed from EPA Method 6020A). CCME PHC in Soil - Tier 1 (mod) d, moisture is removed by heating at 105°C until eight between the wet sample and the dried sample is n analytical results, to report data on a dry weight basis performance. halysis for that test. Refer to the list below: A

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Chain of Cust	ody (COC)	/ Analytical		् च -					, c	OC Nu	mber	17 -	·			
		Red	quest Form	l	Affi	x ALS bar	code	labo	el he	re .								
ALS	Environmental	Conodo Tal	1 Erini 1 900 E	CS 0978		iab (lab)	use only)	¥ (赤	×, "	e.		P	age	1 of			
(www.alsolobal.com		I Free, I OVV O	00 30/0		্র শ												
Report To	Contest and company name bolow will ap	pear on the final report	I	Report Forma	t / Distribution	er hoursel	Se	loct Se	rvice Lo	vel Bel	ow - Co	niact yo	ur AM	to confi	m ell FA	P TATe /	uchara	
Company:	Nighthawk Gold Corp		Select Report F	ormat: @ POF	C 202 0 80	D (DIGITAL)		Regular [R] G Standard TAT if received by 3 pm - bisinest rives - on surtharmer analy										
Contact	Dr. Michael Byron		Quality Control	(QC) Report with F	Report @ YES	O NO	\$ 4	day (F	4-20%)	C	T t	118	usine	ss dav l	E1 . 10	1%)	Aca obtal	
Phone;	705-507-2399	· · · · · · · · · · · · · · · · · · ·	Compare Result	s to Criteria di Report -	provide details belo	wif box checked	1 3	day (P	·3-25%)	D		San	te Dav	. Wook	and or 1	Statuton	holiday	
	Company address below will appear on the fir	nai report	Select Distributi	ion; 🕫 Email	D MAIL D.	FAX	E 2 2	2 day [P2-50%] D [Laboratory opening fees may apply]				ply)]	· [⊏∡ -2					
Street:	430 Westmount Avenue, Unit F	18°,	Email 1 or Fax Michael J Byron <mbyron@righthawkgold.com></mbyron@righthawkgold.com>				Mr Date	Porto and Time Regulared for all E&P TATs:										
City/Province:	Sudbury, ON		Email 2	Lorraine Dupuis <	dupuis@nighth	awkgold.com>	For tests th	its that can not be performed according to the service level selected, you will be contacted.										
Postal Code:	P3A 5Z8	1 × 1	Email 3	billwaychison@gr	nall.com			Analysis Request										
Invoice To	Same as Report To O YES C	ON C		Invoice Di	istribution			Indicate Figured (F), Preserved (P) or Filtered and Preserved (F/P) below							ТТ			
	Copy of Invoice with Report 🛛 🕫 YES	ONE	Select Invoice D	Distribution: 🖬 EM	AIL 🗆 MAIL C	FAX			12	∇			T	Γ	1	TT		1
Company:			Email 1 or Fax.	Michael J Byron <	mbyron@nlghth	awkgold.com>			14		Ī		1	<u> </u>				-
Contact:			Email 2] 4	r d	07			1							
	Project Information			and Gas Require	d Fields (client	use) "ann 🕬] =	25	2	7	ľ		- *			1		
ALS Account #	Account # / Quote #. Q72987 AFE							6		ſ						1		
Job #:	Colomac Incinerator Major/Mine				Routing Code:	· _ · · · · · · · · · · · · · · · · · ·	OF E SE											
PO/AFE:	na Requisitio				•						ſ	0						
LSD;	?? Locati			Location:				72	50	Ş								ĕ
ALS Lab Work Order # (lab use only): 2227 9473			ALS Contact:		Sampler:	John Walther	F		SLE PLE	N140								I NO SE
ALS Sample #	Sample Identification	n and/or Coordinates		Date	Time	Sample Type	1 1	비겨	(<u></u>	Ŧ				·				E I
(Leb use only)	(This description will	appear on the report)		(dd-mmm-yy)	(tran:rem)				<u>~</u> ~	1			-					S.
	N934951 Colomac Incinerator ash			19-May-23	15:30	Waste				1	ļ	1						
. MET 49						<u> </u>			·									'
1945年5																		<u>`</u> +
1 - 1- 1- 			· · · · · · · · · · · · · · · · · · ·													•		-+-
								+	1									
	······································				· • · · · · · · · · · · · · · · · · · ·		<u> </u>		+									
A CARA		······	<u></u>	· · · · · · · · · · · · · · · · · · ·					- <u>+</u> ,			i eri	te de la com	1 ∉ 1 • 01 • 01	1.1.21-1.1.0	a 18 19 19		<u> </u>
							<u> </u>		- <u> </u>									
	· · · · ·	·····				- <u> </u>			↓									
					·						L	227.94	473-	COFC				
6	·	· · · · · · · · · · · · · · · · · · ·												- ; -				
										1	I	1 \$	1	1	i 1	· ·		
	<u> </u>				T			1										
Drinking	Water (DW) Samples ¹ (client use)	Special Instructions / Sp	ecify Criteria to a	add on report by cli	cking on the drop	down list below		jie -	- 7 <u>16</u> 1	SAME	LECO		NASI	RECEIV	ED (lab	use only).	L *
Am samalas tal	in facts a Description DM Constant?		(elec	tronic COC only)	· · · · · · · · · · · · · · · · · · ·		Frozen			4	SIF	Observ	ations	Ye	s [, No	H T
G YES	n ildin a Kedinanan daa sasirun l						Ice Packs	ليل ۶ سفوافو		upes [_] Cus	tody se	al intai	ct Y∈	is L		No	ŝ.
Are samples for	human consumption/ use?	1)Canadian Council of M	linisters of the E	nvironment. 2001,	Canada-Wide Si	landards for		nuate Natia		RTEMPI	RATURE	5*C	1911 - 191	rin alah X	FINAL C	COLER TE	MPERATU	RES C
D YES	i e no	Dioxins and Furans, 2)G	NWT. 2017. Gu	idelines for Hazard	ous Waste Mana	igement.			1	hod ir Sal			, I		ંત	OPE	:: <u></u>	14
	SHIPMENT RELEASE (client us	e)		INITIAL SHIPMEN	T RECEPTION	(lab yse only)	83×		I	6	FINAL	. SHIPI	MENT	RECEP	TION (I	b use or	Ily}	
Released by: J	Walther Date: 19-05-24	8:00	Received by:	\mathcal{P}	Date: MON	14 2 m	Time:	Re	ceived b	ŋy:	TC	2	Date:	MAY	20:	010 J		Time:
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLE	NG INFORMATION	L	/ <u>2</u> .WH	ITE - LABORATO		117 0/ LOW-CLA	ENT C				<u>-</u> . <u>,</u>		1-11-1	201			1215 p

.

Failer to Complete all policy of this form may delay shally field at this form LEGRLY. By the use of this form the user achowledges and spress with the Terms and Conditions as specified on the back page of the while - report copy. 1, If any water samples are taken from a Regulated Drinking Water (DW). System, pixeles submit using an Authorized DW COC form.

ALSENUICON	n	Chain of Custody (COC) / Analytical									COC Number: 17 -											
(ALS) Enginar		questi onn		Aft	IX ALS bar	COC:	e iat wi	el ne	ere	621			Page		1 of							
	ILIEI BLANK Canada To	II Free: 1 800 66	8 9878	i e i				Ű.	h. ^{ĝi}													
<u>vaw.aisoiobal.co</u>	1	······································				19 an	41	а 1 ₁₉₆ , 1														
Report To Context and com	O Lonza and company neme below we appear on the relef report.			Report Format / Distribution					Sureci Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may													
Company: Nighthawk Gold Con	Inighthawk Good Corp			Select Report Format: B FOF B EXCEL 10 EDD (DIGITAL)					Construction of the second of a provide of a pro-business days - no surcharges apply													
Contact Dr. Michael Byron	Ur. Michael Byron										9 1 Business day [E1 - 100%]											
Phone: 705-507-2399	The compare results to criteria on region - provide statis brow it por criedies					3 day	[P3-25%		1	Š S	iame (Day, W	/eeken	d or Sta	tutory)	ioliday (Ez						
Company eddress beic	Company eddress below will appear on the final report			Select Distribution: G EMAIL C MAIL O FAX					_ 2 day [P2-50%] □						[LBODratory opening fees may apply]]							
Street: 430 Westmount Aver	ice, Unit F	Email 1 or Fax Michael J Byron <mbyron@nighthawkgold.com></mbyron@nighthawkgold.com>					Date and Time Required for all E&P TATs: W															
City/Province: Sudbury, ON		Email 2 I	For tests that can not be performed according to the service level selected, you will be contacted,																			
Postal Code: P3A 5Z8	xde: P3A 5Z8			Email 3 billwaychison@gmail.com					Analysis Request													
Involce To Same as Report To	O YES T NO	Invoice Distribution					Indicate Filtered (F). Proserved (P) or Filtered and Preserved (F/P) below															
Copy of Invoice with	Copy of Invoice with Report @ YES D NO			Select Invoice Distribution: @ EMAIL D MAIL O FAX					$\overline{\mathbf{N}}$													
Company:	nv.			Email 1 or Fax Michael J Byron <mbyron@nighthawkgold.com></mbyron@nighthawkgold.com>					- ^ -						┼──┼							
Contact:		Email 2				1	Ł	ố) 2	12													
Project Information		The State Oil and Gas Required Fields (client use)					2	1 2	5						-							
ALS Account # / Quote #	Q72987	AFE/Cost Center:		PO#		1	£ -	2 2	. c		1	1			ľ							
Inb # Colomac incidenator		Major/Miner Code:		Routing Code:		1 [0	2 2	9													
		Requisitionen		1		1	1	7 8	: E			ľ										
1 CD+ 22		Location:					2	$\infty \infty$	· /								19					
ALS Lab Work Order # (lab use c	nty): 12279473	ALS Contact:		Sampler:	John Walther			LE 1613	PINC.		-						DH NO S					
ALE Sámpio #	mple Identification and/or Coordinates	1	Date	Тіте	T	1	(J	XE	1				-				E E					
(lob use only)	This description will appear on the record)		(dd-mmm-yy)	(hhamm)	Sample Type	1	\leq	<u> 15</u>	$\overline{\mathbf{G}}$								Ŵ					
N934951 Colomac Ir	cinerator ash		19-May-23	15:30	Waste								+	-			<u>. </u>					
1977		T		1		T			-								• •					
						╂╌╼┾		•									ļ					
1994						╈╌┥																
	.b.					┞──┤									r							
				1 ×		ļ											. <u> </u>					
			<u> </u>		-	 _			11 († 1 1 1						41 4 FM -9 4	F-1010						
and the second	-																·					
······································					·																	
and a statement											227	047	3.07	ነሮድ	** *, 6 8 4 1		-					
						1 1				•	n 4., 6., 1		ມາບປ	ΨŪ,								
No states Viewicz				<u> </u>		<u> </u>			1 1	4	ı	1	1		•	• ••						
								<u>·</u>			1		1-		<u> </u>		╂╌╌╂╌╌╴					
Drinking Water (DW) Sample	(client use) Special Instructions / 5	ipecify Criteria to ad	d on report by clic	cking on the dro	-down list below	-	, i - 1'	alar ang pag	SAM	PLEC	ONDIT	ION A	SREC	CEIVED	(lab us	e'only)						
and there (but) cample		(electr	onic COC only)			Frozei	n 		а 1929 г.	୍ର 🎽	IF Obs	ervatic	m\$	Yes		ji ji	No					
Are sumples taken from a Regulated D	A PARICULA					lice Pa	icks		ubes	L ¢	ustody	seal Ir	itact	Yes			l No 🖏					
		Lintatana -faine the		Onendo 168ão O	tanda da ta-	Coolin	ng Initia		36 d	يك محمد مع 19 داري المحمد		4	ز . ارد	nF2	ជារុំដែ		(a)					
D YFS IR NO	Dioxins and Furans. 2)	GNWT. 2017. Guid	elines for Hazard	ous Waste Man	ianoaros tor agement,		* [ry ry	ER (EMF	CRAID)	1001		1 (1)15 930 947	inter Fl Star	NAL COC	LER JEM	PERATURES					
SUIDMENT E	Provised Oct 7017	1	ITIAL SHIPMEN	TRECEPTION	(ab use only)	I	-	·2.	đ.	···	A1 64	i. 1104451			311.6-0	10	<u> </u>					
Released by: J Walther	Date: 19-05-24 8:00	Received by: //	17	Date: Man	10 30	Time:		eceived	by:	1.118	~	Da	te:		A 0	use onl	<u>/)</u>					
PELEP TO BACK PACE FOR MICHON	TIONS AND SAMPLING INCOMENDATION	1. [2	1471.2		<u> </u>	15:0	7		- , ,	J(<u> </u>	Ň	<u>ः</u> ।	AAY Z	9 70	19						

.

False to complete as pontors of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the while - report copy, 1, if any water damples are taken from a Regulated Drinking Water (DW). System, please submit using an Authorized DW COC form.

 \mathbf{Y}_{i}

-

۲